mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-11 22:58:40 +00:00
Elevate the real numbers to actually existing (#65)
This commit is contained in:
@@ -24,15 +24,16 @@ open import Fields.FieldOfFractions.Ring I
|
||||
fieldOfFractions : Field fieldOfFractionsRing
|
||||
Field.allInvertible fieldOfFractions (fst ,, (b , _)) prA = (b ,, (fst , ans)) , need
|
||||
where
|
||||
open Setoid S
|
||||
open Equivalence eq
|
||||
need : ((b * fst) * Ring.1R R) ∼ ((fst * b) * Ring.1R R)
|
||||
need = Ring.*WellDefined R (Ring.*Commutative R) reflexive
|
||||
ans : fst ∼ Ring.0R R → False
|
||||
ans pr = prA need'
|
||||
where
|
||||
need' : (fst * Ring.1R R) ∼ (b * Ring.0R R)
|
||||
need' = transitive (Ring.*WellDefined R pr reflexive) (transitive (transitive (Ring.*Commutative R) (Ring.timesZero R)) (symmetric (Ring.timesZero R)))
|
||||
abstract
|
||||
open Setoid S
|
||||
open Equivalence eq
|
||||
need : ((b * fst) * Ring.1R R) ∼ ((fst * b) * Ring.1R R)
|
||||
need = Ring.*WellDefined R (Ring.*Commutative R) reflexive
|
||||
ans : fst ∼ Ring.0R R → False
|
||||
ans pr = prA need'
|
||||
where
|
||||
need' : (fst * Ring.1R R) ∼ (b * Ring.0R R)
|
||||
need' = transitive (Ring.*WellDefined R pr reflexive) (transitive (transitive (Ring.*Commutative R) (Ring.timesZero R)) (symmetric (Ring.timesZero R)))
|
||||
Field.nontrivial fieldOfFractions pr = IntegralDomain.nontrivial I (symmetric (transitive (symmetric (Ring.timesZero R)) (transitive (Ring.*Commutative R) (transitive pr (Ring.identIsIdent R)))))
|
||||
where
|
||||
open Setoid S
|
||||
|
Reference in New Issue
Block a user