Bump up to 2.6.2

This commit is contained in:
Smaug123
2021-10-31 18:19:15 +00:00
parent 4b8f6993d0
commit 7f4ed2ec7e
7 changed files with 37 additions and 30 deletions

View File

@@ -51,12 +51,12 @@ private
dividesZero (c , pr) = symmetric (transitive (symmetric (transitive *Commutative timesZero)) pr)
zeroIdealPrimeImpliesIntDom : PrimeIdeal (generatedIdeal R 0R) IntegralDomain R
IntegralDomain.intDom (zeroIdealPrimeImpliesIntDom record { isPrime = isPrime ; notContained = notContained ; notContainedIsNotContained = notContainedIsNotContained }) {a} {b} ab=0 a!=0 with isPrime {a} {b} (1R , transitive (transitive *Commutative timesZero) (symmetric ab=0)) λ 0|a a!=0 (dividesZero 0|a)
IntegralDomain.intDom (zeroIdealPrimeImpliesIntDom record { isPrime = isPrime ; notContained = notContained ; notContainedIsNotContained = notContainedIsNotContained }) {a} {b} ab=0 a!=0 with isPrime {a} {b} (1R , transitive (transitive *Commutative timesZero) (symmetric ab=0)) (λ 0|a a!=0 (dividesZero 0|a))
... | c , 0c=b = transitive (symmetric 0c=b) (transitive *Commutative timesZero)
IntegralDomain.nontrivial (zeroIdealPrimeImpliesIntDom record { isPrime = isPrime ; notContained = notContained ; notContainedIsNotContained = notContainedIsNotContained }) 1=0 = notContainedIsNotContained (notContained , transitive (*WellDefined (symmetric 1=0) reflexive) identIsIdent)
intDomImpliesZeroIdealPrime : IntegralDomain R PrimeIdeal (generatedIdeal R 0R)
PrimeIdeal.isPrime (intDomImpliesZeroIdealPrime intDom) (c , 0=ab) 0not|a with IntegralDomain.intDom intDom (transitive (symmetric 0=ab) (transitive *Commutative timesZero)) λ a=0 0not|a (0R , transitive timesZero (symmetric a=0))
PrimeIdeal.isPrime (intDomImpliesZeroIdealPrime intDom) (c , 0=ab) 0not|a with IntegralDomain.intDom intDom (transitive (symmetric 0=ab) (transitive *Commutative timesZero)) (λ a=0 0not|a (0R , transitive timesZero (symmetric a=0)))
... | b=0 = 0R , transitive timesZero (symmetric b=0)
PrimeIdeal.notContained (intDomImpliesZeroIdealPrime intDom) = 1R
PrimeIdeal.notContainedIsNotContained (intDomImpliesZeroIdealPrime intDom) (c , 0c=1) = IntegralDomain.nontrivial intDom (symmetric (transitive (symmetric (transitive *Commutative timesZero)) 0c=1))