mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-10 06:08:39 +00:00
Split partial and total order of rings (#61)
This commit is contained in:
@@ -7,7 +7,8 @@ open import Numbers.Integers.Addition
|
||||
open import Numbers.Integers.Multiplication
|
||||
open import Semirings.Definition
|
||||
open import Rings.Definition
|
||||
open import Rings.Orders.Definition
|
||||
open import Rings.Orders.Partial.Definition
|
||||
open import Rings.Orders.Total.Definition
|
||||
open import Setoids.Setoids
|
||||
open import Setoids.Orders
|
||||
open import Orders
|
||||
@@ -95,6 +96,9 @@ orderRespectsAddition (negSucc a) (negSucc b) (le x proof) (negSucc c) = le x (t
|
||||
orderRespectsMultiplication : (a b : ℤ) → nonneg 0 <Z a → nonneg 0 <Z b → nonneg 0 <Z a *Z b
|
||||
orderRespectsMultiplication (nonneg (succ a)) (nonneg (succ b)) 0<a 0<b = lessInherits (succIsPositive (b +N a *N succ b))
|
||||
|
||||
ℤOrderedRing : OrderedRing ℤRing (totalOrderToSetoidTotalOrder ℤOrder)
|
||||
OrderedRing.orderRespectsAddition ℤOrderedRing {a} {b} = orderRespectsAddition a b
|
||||
OrderedRing.orderRespectsMultiplication ℤOrderedRing {a} {b} = orderRespectsMultiplication a b
|
||||
ℤPOrderedRing : PartiallyOrderedRing ℤRing (SetoidTotalOrder.partial (totalOrderToSetoidTotalOrder ℤOrder))
|
||||
PartiallyOrderedRing.orderRespectsAddition ℤPOrderedRing {a} {b} = orderRespectsAddition a b
|
||||
PartiallyOrderedRing.orderRespectsMultiplication ℤPOrderedRing {a} {b} = orderRespectsMultiplication a b
|
||||
|
||||
ℤOrderedRing : TotallyOrderedRing ℤPOrderedRing
|
||||
TotallyOrderedRing.total ℤOrderedRing = totalOrderToSetoidTotalOrder ℤOrder
|
||||
|
Reference in New Issue
Block a user