mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-13 07:38:40 +00:00
Split partial and total order of rings (#61)
This commit is contained in:
@@ -67,6 +67,24 @@ decreasingHalving N with halve charNot2 1R
|
||||
decreasingHalving N | 1/2 , pr1/2 with (halfLess 1/2 1R (0<1 (charNot2ImpliesNontrivial charNot2)) pr1/2)
|
||||
... | 1/2<1 = <WellDefined (Equivalence.transitive eq (identityOfIndiscernablesLeft _∼_ (Equivalence.reflexive eq) (equalityCommutative (mapAndIndex (halvingSequence 1R) (_*_ 1/2) N))) (Equivalence.symmetric eq (halvingSequenceMultiple 1/2 {N}))) identIsIdent (ringCanMultiplyByPositive {c = index (halvingSequence 1R) N} (halvingSequencePositive N) 1/2<1)
|
||||
|
||||
imageOfN : ℕ → A
|
||||
imageOfN zero = 0R
|
||||
imageOfN (succ x) = 1R + imageOfN x
|
||||
|
||||
nextImageOfN : (a : A) → 0R < a → ℕ
|
||||
nextImageOfN a 0<a = ?
|
||||
|
||||
halvingToZero : (a : A) → (0G < a) → Sg ℕ (λ N → (index (halvingSequence 1R) N) < a)
|
||||
halvingToZero a 0<a with SetoidTotalOrder.totality tOrder a 1R
|
||||
halvingToZero a 0<a | inl (inl a<1) = {!!}
|
||||
halvingToZero a 0<a | inl (inr 1<a) = 0 , 1<a
|
||||
halvingToZero a 0<a | inr a=1 with halve charNot2 1R
|
||||
... | 1/2 , pr1/2 = 1 , <WellDefined ans (Equivalence.symmetric eq a=1) (halfLess 1/2 1R (0<1 (charNot2ImpliesNontrivial charNot2)) pr1/2)
|
||||
where
|
||||
ans : 1/2 ∼ Sequence.head (Sequence.tail (halvingSequence 1R))
|
||||
ans with halve charNot2 1R
|
||||
ans | 1/2' , pr1/2' = halvesEqual charNot2 1/2 1/2' pr1/2 pr1/2'
|
||||
|
||||
halvesCauchy : cauchy (halvingSequence 1R)
|
||||
halvesCauchy e 0<e = {!!}
|
||||
|
||||
|
Reference in New Issue
Block a user