Split partial and total order of rings (#61)

This commit is contained in:
Patrick Stevens
2019-11-02 18:42:37 +00:00
committed by GitHub
parent 55995ea801
commit 763ddb8dbb
26 changed files with 768 additions and 618 deletions

View File

@@ -4,7 +4,8 @@ open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Setoids.Setoids
open import Rings.Definition
open import Rings.Lemmas
open import Rings.Orders.Definition
open import Rings.Orders.Partial.Definition
open import Rings.Orders.Total.Definition
open import Groups.Definition
open import Groups.Groups
open import Fields.Fields
@@ -15,20 +16,21 @@ open import Functions
open import LogicalFormulae
open import Numbers.Naturals.Naturals
module Fields.CauchyCompletion.Addition {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A A A} {_*_ : A A A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {tOrder : SetoidTotalOrder {_<_ = _<_} pOrder} {R : Ring S _+_ _*_} (order : OrderedRing R tOrder) (F : Field R) (charNot2 : Setoid.__ S ((Ring.1R R) + (Ring.1R R)) (Ring.0R R) False) where
module Fields.CauchyCompletion.Addition {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A A A} {_*_ : A A A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) (charNot2 : Setoid.__ S ((Ring.1R R) + (Ring.1R R)) (Ring.0R R) False) where
open Setoid S
open SetoidTotalOrder tOrder
open SetoidTotalOrder (TotallyOrderedRing.total order)
open SetoidPartialOrder pOrder
open Equivalence eq
open OrderedRing order
open PartiallyOrderedRing pRing
open Ring R
open Group additiveGroup
open Field F
open import Fields.Lemmas F
open import Fields.CauchyCompletion.Definition order F
open import Rings.Orders.Lemmas(order)
open import Rings.Orders.Partial.Lemmas pRing
open import Rings.Orders.Total.Lemmas order
lemm : (m : ) (a b : Sequence A) index (apply _+_ a b) m (index a m) + (index b m)
lemm zero a b = refl