mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-11 06:38:39 +00:00
Cauchy-completion, first parts (#52)
This commit is contained in:
@@ -34,13 +34,6 @@ module Rings.Definition where
|
||||
timesZero : {a : A} → a * 0R ∼ 0R
|
||||
timesZero {a} = symmetric (transitive (transitive (symmetric invLeft) (+WellDefined reflexive (transitive (*WellDefined {a} {a} reflexive (symmetric identRight)) *DistributesOver+))) (transitive +Associative (transitive (+WellDefined invLeft reflexive) identLeft)))
|
||||
|
||||
record OrderedRing {n m p} {A : Set n} {S : Setoid {n} {m} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {_} {p} A} {pOrder : SetoidPartialOrder S _<_} (R : Ring S _+_ _*_) (order : SetoidTotalOrder pOrder) : Set (lsuc n ⊔ m ⊔ p) where
|
||||
open Ring R
|
||||
open Group additiveGroup
|
||||
open Setoid S
|
||||
field
|
||||
orderRespectsAddition : {a b : A} → (a < b) → (c : A) → (a + c) < (b + c)
|
||||
orderRespectsMultiplication : {a b : A} → (0R < a) → (0R < b) → (0R < (a * b))
|
||||
|
||||
--directSumRing : {m n : _} → {A : Set m} {B : Set n} (r : Ring A) (s : Ring B) → Ring (A && B)
|
||||
--Ring.additiveGroup (directSumRing r s) = directSumGroup (Ring.additiveGroup r) (Ring.additiveGroup s)
|
||||
@@ -66,10 +59,3 @@ module Rings.Definition where
|
||||
-- field
|
||||
-- ringHom : RingHom R S f
|
||||
-- bijective : Bijection f
|
||||
|
||||
|
||||
abs : {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {_} {c} A} {pOrder : SetoidPartialOrder S _<_} (R : Ring S _+_ _*_) (order : SetoidTotalOrder pOrder) (x : A) → A
|
||||
abs R order x with SetoidTotalOrder.totality order (Ring.0R R) x
|
||||
... | inl (inl 0<x) = x
|
||||
... | inl (inr x<0) = Group.inverse (Ring.additiveGroup R) x
|
||||
... | inr 0=x = Ring.0R R
|
||||
|
Reference in New Issue
Block a user