mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-13 07:38:40 +00:00
Cauchy-completion, first parts (#52)
This commit is contained in:
@@ -4,6 +4,7 @@ open import LogicalFormulae
|
||||
open import Groups.Groups
|
||||
open import Groups.Definition
|
||||
open import Rings.Definition
|
||||
open import Rings.Order
|
||||
open import Rings.Lemmas
|
||||
open import Setoids.Setoids
|
||||
open import Setoids.Orders
|
||||
@@ -31,7 +32,7 @@ module Fields.Fields where
|
||||
open Equivalence eq
|
||||
open Ring R
|
||||
a!=0 : (a ∼ Group.0G additiveGroup) → False
|
||||
a!=0 pr = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.wellDefined pOrder (symmetric pr) reflexive x)
|
||||
a!=0 pr = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<WellDefined pOrder (symmetric pr) reflexive x)
|
||||
invA : A
|
||||
invA = underlying (Field.allInvertible F a a!=0)
|
||||
q : 1R ∼ (invA * a)
|
||||
@@ -47,7 +48,7 @@ module Fields.Fields where
|
||||
open Equivalence eq
|
||||
open Ring R
|
||||
a!=0 : (a ∼ Group.0G additiveGroup) → False
|
||||
a!=0 pr = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.wellDefined pOrder reflexive (symmetric pr) x)
|
||||
a!=0 pr = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<WellDefined pOrder reflexive (symmetric pr) x)
|
||||
invA : A
|
||||
invA = underlying (Field.allInvertible F a a!=0)
|
||||
q : 1R ∼ (invA * a)
|
||||
|
Reference in New Issue
Block a user