mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-17 09:28:40 +00:00
Lots of rings (#82)
This commit is contained in:
58
Rings/Ideals/Lemmas.agda
Normal file
58
Rings/Ideals/Lemmas.agda
Normal file
@@ -0,0 +1,58 @@
|
||||
{-# OPTIONS --safe --warning=error --without-K #-}
|
||||
|
||||
open import LogicalFormulae
|
||||
open import Groups.Groups
|
||||
open import Groups.Homomorphisms.Definition
|
||||
open import Groups.Definition
|
||||
open import Numbers.Naturals.Naturals
|
||||
open import Setoids.Orders
|
||||
open import Setoids.Setoids
|
||||
open import Functions
|
||||
open import Sets.EquivalenceRelations
|
||||
open import Rings.Definition
|
||||
open import Rings.Homomorphisms.Definition
|
||||
open import Groups.Homomorphisms.Lemmas
|
||||
open import Groups.Subgroups.Definition
|
||||
open import Rings.Homomorphisms.Kernel
|
||||
open import Rings.Cosets
|
||||
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
|
||||
module Rings.Ideals.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where
|
||||
|
||||
open import Rings.Ideals.Definition R
|
||||
|
||||
idealPredForKernel : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+2_ _*2_ : C → C → C} (R2 : Ring T _+2_ _*2_) {f : A → C} (fHom : RingHom R R2 f) → A → Set d
|
||||
idealPredForKernel {T = T} R2 {f} fHom a = Setoid._∼_ T (f a) (Ring.0R R2)
|
||||
|
||||
idealPredForKernelWellDefined : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+2_ _*2_ : C → C → C} (R2 : Ring T _+2_ _*2_) {f : A → C} (fHom : RingHom R R2 f) → {x y : A} → (Setoid._∼_ S x y) → (idealPredForKernel R2 fHom x → idealPredForKernel R2 fHom y)
|
||||
idealPredForKernelWellDefined {T = T} R2 {f} fHom a x=0 = Equivalence.transitive (Setoid.eq T) (GroupHom.wellDefined (RingHom.groupHom fHom) (Equivalence.symmetric (Setoid.eq S) a)) x=0
|
||||
|
||||
kernelIdealIsIdeal : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+2_ _*2_ : C → C → C} {R2 : Ring T _+2_ _*2_} {f : A → C} (fHom : RingHom R R2 f) → Ideal (idealPredForKernel R2 fHom)
|
||||
Subgroup.isSubset (Ideal.isSubgroup (kernelIdealIsIdeal {R2 = R2} fHom)) = idealPredForKernelWellDefined R2 fHom
|
||||
Subgroup.closedUnderPlus (Ideal.isSubgroup (kernelIdealIsIdeal {T = T} {R2 = R2} fHom)) {x} {y} fx=0 fy=0 = transitive (transitive (GroupHom.groupHom (RingHom.groupHom fHom)) (+WellDefined fx=0 fy=0)) identLeft
|
||||
where
|
||||
open Ring R2
|
||||
open Group (Ring.additiveGroup R2)
|
||||
open Setoid T
|
||||
open Equivalence eq
|
||||
Subgroup.containsIdentity (Ideal.isSubgroup (kernelIdealIsIdeal fHom)) = imageOfIdentityIsIdentity (RingHom.groupHom fHom)
|
||||
Subgroup.closedUnderInverse (Ideal.isSubgroup (kernelIdealIsIdeal {T = T} {R2 = R2} fHom)) {x} fx=0 = zeroImpliesInverseZero (RingHom.groupHom fHom) fx=0
|
||||
where
|
||||
open Ring R2
|
||||
open Group (Ring.additiveGroup R2)
|
||||
open Setoid T
|
||||
open Equivalence eq
|
||||
Ideal.accumulatesTimes (kernelIdealIsIdeal {T = T} {R2 = R2} {f = f} fHom) {x} {y} fx=0 = transitive (RingHom.ringHom fHom) (transitive (Ring.*WellDefined R2 fx=0 reflexive) (transitive (Ring.*Commutative R2) (Ring.timesZero R2 {f y})))
|
||||
where
|
||||
open Setoid T
|
||||
open Equivalence eq
|
||||
|
||||
open Setoid S
|
||||
open Ring R
|
||||
open Group additiveGroup
|
||||
open Equivalence eq
|
||||
open import Groups.Lemmas additiveGroup
|
||||
|
||||
idealIsKernelMap : {c : _} {pred : A → Set c} → (i : Ideal pred) → {x : A} → pred x → ringKernel {R1 = R} {R2 = cosetRing R i} (cosetRingHom R i)
|
||||
idealIsKernelMap {c} {pred} i {x} predX = x , (Ideal.isSubset i (transitive (symmetric identLeft) (+WellDefined (symmetric invIdent) reflexive)) predX)
|
Reference in New Issue
Block a user