Lots of rings (#82)

This commit is contained in:
Patrick Stevens
2019-11-22 19:52:57 +00:00
committed by GitHub
parent b33baa5fb7
commit 660d7aa27c
40 changed files with 1246 additions and 881 deletions

View File

@@ -0,0 +1,37 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Groups
open import Groups.Homomorphisms.Definition
open import Groups.Definition
open import Numbers.Naturals.Definition
open import Numbers.Naturals.Order
open import Setoids.Orders
open import Setoids.Setoids
open import Functions
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Rings.Homomorphisms.Definition
open import Groups.Homomorphisms.Lemmas
open import Rings.IntegralDomains.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Rings.EuclideanDomains.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A A A} (R : Ring S _+_ _*_) where
open Setoid S
open Ring R
record DivisionAlgorithmResult {norm : {a : A} ((a 0R) False) } {x y : A} (x!=0 : (x 0R) False) (y!=0 : (y 0R) False) : Set (a b) where
field
quotient : A
rem : A
remSmall : (rem 0R) || Sg ((rem 0R) False) (λ rem!=0 (norm rem!=0) <N (norm y!=0))
divAlg : x ((quotient * y) + rem)
record EuclideanDomain : Set (a lsuc b) where
field
isIntegralDomain : IntegralDomain R
norm : {a : A} ((a 0R) False)
normSize : {a b : A} (a!=0 : (a 0R) False) (b!=0 : (b 0R) False) (c : A) b (a * c) (norm a!=0) ≤N (norm b!=0)
divisionAlg : {a b : A} (a!=0 : (a 0R) False) (b!=0 : (b 0R) False) DivisionAlgorithmResult {norm} a!=0 b!=0

View File

@@ -0,0 +1,39 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Groups
open import Groups.Homomorphisms.Definition
open import Groups.Definition
open import Numbers.Naturals.Definition
open import Numbers.Naturals.Order
open import Setoids.Orders
open import Setoids.Setoids
open import Functions
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Rings.Homomorphisms.Definition
open import Groups.Homomorphisms.Lemmas
open import Rings.IntegralDomains.Definition
open import Rings.IntegralDomains.Examples
open import Rings.EuclideanDomains.Definition
open import Fields.Fields
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Rings.EuclideanDomains.Examples where
polynomialField : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A A A} {R : Ring S _+_ _*_} (F : Field R) (Setoid.__ S (Ring.1R R) (Ring.0R R) False) EuclideanDomain R
EuclideanDomain.isIntegralDomain (polynomialField F 1!=0) = fieldIsIntDom F 1!=0
EuclideanDomain.norm (polynomialField F _) a!=0 = zero
EuclideanDomain.normSize (polynomialField F _) a!=0 b!=0 c b=ac = inr refl
DivisionAlgorithmResult.quotient (EuclideanDomain.divisionAlg (polynomialField {_*_ = _*_} F _) {a = a} {b} a!=0 b!=0) with Field.allInvertible F b b!=0
... | bInv , prB = a * bInv
DivisionAlgorithmResult.rem (EuclideanDomain.divisionAlg (polynomialField F _) a!=0 b!=0) = Field.0F F
DivisionAlgorithmResult.remSmall (EuclideanDomain.divisionAlg (polynomialField {S = S} F _) a!=0 b!=0) = inl (Equivalence.reflexive (Setoid.eq S))
DivisionAlgorithmResult.divAlg (EuclideanDomain.divisionAlg (polynomialField {S = S} {R = R} F _) {a = a} {b = b} a!=0 b!=0) with Field.allInvertible F b b!=0
... | bInv , prB = transitive (transitive (transitive (symmetric identIsIdent) (transitive *Commutative (*WellDefined reflexive (symmetric prB)))) *Associative) (symmetric identRight)
where
open Setoid S
open Equivalence eq
open Ring R
open Group additiveGroup