Lots of rings (#82)

This commit is contained in:
Patrick Stevens
2019-11-22 19:52:57 +00:00
committed by GitHub
parent b33baa5fb7
commit 660d7aa27c
40 changed files with 1246 additions and 881 deletions

View File

@@ -9,13 +9,28 @@ open import Groups.FiniteGroups.Definition
open import Groups.Homomorphisms.Definition
open import Groups.Abelian.Definition
open import Setoids.Setoids
open import Fields.FieldOfFractions.Setoid
open import Sets.EquivalenceRelations
open import Groups.Lemmas
open import Groups.QuotientGroup.Definition
open import Groups.Homomorphisms.Lemmas
module Groups.QuotientGroup.Lemmas {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+A_ : A A A} {_+B_ : B B B} (G : Group S _+A_) (H : Group T _+B_) {f : A B} (fHom : GroupHom G H f) where
quotientGroupLemma : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) {H : Group T _·B_} {underf : A B} (f : GroupHom G H underf) {x y : A} Setoid.__ T (underf x) (underf y) Setoid.__ (quotientGroupSetoid G f) x y
quotientGroupLemma {S = S} {T = T} G {H = H} fHom {x} {y} fx=fy = transitive (GroupHom.groupHom fHom) (transitive (Group.+WellDefined H (Equivalence.reflexive (Setoid.eq T)) (homRespectsInverse fHom)) (transferToRight'' H fx=fy))
where
open Group G
open Setoid T
open Equivalence eq
quotientGroupLemma' : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) {H : Group T _·B_} {underf : A B} (f : GroupHom G H underf) {x y : A} Setoid.__ (quotientGroupSetoid G f) x y Setoid.__ T (underf x) (underf y)
quotientGroupLemma' {S = S} {T = T} G {H = H} f fx=fy = transferToRight H (transitive (transitive (Group.+WellDefined H (Equivalence.reflexive (Setoid.eq T)) (symmetric (homRespectsInverse f))) (symmetric (GroupHom.groupHom f))) fx=fy)
where
open Group G
open Setoid T
open Equivalence eq
projectionMapIsGroupHom : GroupHom G (quotientGroupByHom G fHom) id
GroupHom.groupHom projectionMapIsGroupHom {x} {y} = quotientGroupLemma G fHom (Equivalence.reflexive (Setoid.eq T))
GroupHom.wellDefined projectionMapIsGroupHom x=y = quotientGroupLemma G fHom (GroupHom.wellDefined fHom x=y)