mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-13 07:38:40 +00:00
Lots of rings (#82)
This commit is contained in:
@@ -6,7 +6,7 @@ open import Groups.Definition
|
||||
open import Groups.Lemmas
|
||||
open import Rings.Definition
|
||||
open import Rings.Lemmas
|
||||
open import Rings.IntegralDomains
|
||||
open import Rings.IntegralDomains.Definition
|
||||
open import Fields.Fields
|
||||
open import Functions
|
||||
open import Setoids.Setoids
|
||||
@@ -25,8 +25,7 @@ fieldOfFractionsPlus (a ,, (b , b!=0)) (c ,, (d , d!=0)) = (((a * d) + (b * c))
|
||||
open Ring R
|
||||
ans : ((b * d) ∼ Ring.0R R) → False
|
||||
ans pr with IntegralDomain.intDom I pr
|
||||
ans pr | inl x = b!=0 x
|
||||
ans pr | inr x = d!=0 x
|
||||
ans pr | f = exFalso (d!=0 (f b!=0))
|
||||
|
||||
plusWellDefined : {a b c d : fieldOfFractionsSet} → (Setoid._∼_ fieldOfFractionsSetoid a c) → (Setoid._∼_ fieldOfFractionsSetoid b d) → Setoid._∼_ fieldOfFractionsSetoid (fieldOfFractionsPlus a b) (fieldOfFractionsPlus c d)
|
||||
plusWellDefined {a ,, (b , b!=0)} {c ,, (d , d!=0)} {e ,, (f , f!=0)} {g ,, (h , h!=0)} af=be ch=dg = need
|
||||
|
@@ -6,7 +6,7 @@ open import Groups.Definition
|
||||
open import Groups.Lemmas
|
||||
open import Rings.Definition
|
||||
open import Rings.Lemmas
|
||||
open import Rings.IntegralDomains
|
||||
open import Rings.IntegralDomains.Definition
|
||||
open import Fields.Fields
|
||||
open import Functions
|
||||
open import Setoids.Setoids
|
||||
|
@@ -6,7 +6,7 @@ open import Groups.Definition
|
||||
open import Groups.Lemmas
|
||||
open import Rings.Definition
|
||||
open import Rings.Lemmas
|
||||
open import Rings.IntegralDomains
|
||||
open import Rings.IntegralDomains.Definition
|
||||
open import Fields.Fields
|
||||
open import Functions
|
||||
open import Setoids.Setoids
|
||||
|
@@ -8,7 +8,7 @@ open import Groups.Lemmas
|
||||
open import Rings.Definition
|
||||
open import Rings.Lemmas
|
||||
open import Rings.Homomorphisms.Definition
|
||||
open import Rings.IntegralDomains
|
||||
open import Rings.IntegralDomains.Definition
|
||||
open import Fields.Fields
|
||||
open import Functions
|
||||
open import Setoids.Setoids
|
||||
|
@@ -6,7 +6,7 @@ open import Groups.Definition
|
||||
open import Groups.Lemmas
|
||||
open import Rings.Definition
|
||||
open import Rings.Lemmas
|
||||
open import Rings.IntegralDomains
|
||||
open import Rings.IntegralDomains.Definition
|
||||
open import Fields.Fields
|
||||
open import Functions
|
||||
open import Setoids.Setoids
|
||||
@@ -25,8 +25,7 @@ fieldOfFractionsTimes (a ,, (b , b!=0)) (c ,, (d , d!=0)) = (a * c) ,, ((b * d)
|
||||
open Ring R
|
||||
ans : ((b * d) ∼ Ring.0R R) → False
|
||||
ans pr with IntegralDomain.intDom I pr
|
||||
ans pr | inl x = b!=0 x
|
||||
ans pr | inr x = d!=0 x
|
||||
ans pr | f = exFalso (d!=0 (f b!=0))
|
||||
|
||||
fieldOfFractionsTimesWellDefined : {a b c d : fieldOfFractionsSet} → (Setoid._∼_ fieldOfFractionsSetoid a c) → (Setoid._∼_ fieldOfFractionsSetoid b d) → (Setoid._∼_ fieldOfFractionsSetoid (fieldOfFractionsTimes a b) (fieldOfFractionsTimes c d))
|
||||
fieldOfFractionsTimesWellDefined {a ,, (b , _)} {c ,, (d , _)} {e ,, (f , _)} {g ,, (h , _)} af=be ch=dg = need
|
||||
|
File diff suppressed because it is too large
Load Diff
@@ -6,7 +6,7 @@ open import Groups.Definition
|
||||
open import Groups.Lemmas
|
||||
open import Rings.Definition
|
||||
open import Rings.Lemmas
|
||||
open import Rings.IntegralDomains
|
||||
open import Rings.IntegralDomains.Definition
|
||||
open import Fields.Fields
|
||||
open import Functions
|
||||
open import Setoids.Setoids
|
||||
|
@@ -6,16 +6,17 @@ open import Groups.Definition
|
||||
open import Groups.Lemmas
|
||||
open import Rings.Definition
|
||||
open import Rings.Lemmas
|
||||
open import Rings.IntegralDomains
|
||||
open import Fields.Fields
|
||||
open import Functions
|
||||
open import Setoids.Setoids
|
||||
open import Sets.EquivalenceRelations
|
||||
open import Rings.IntegralDomains.Definition
|
||||
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
|
||||
module Fields.FieldOfFractions.Setoid {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where
|
||||
|
||||
|
||||
fieldOfFractionsSet : Set (a ⊔ b)
|
||||
fieldOfFractionsSet = (A && (Sg A (λ a → (Setoid._∼_ S a (Ring.0R R) → False))))
|
||||
|
||||
@@ -36,9 +37,7 @@ Equivalence.transitive (Setoid.eq fieldOfFractionsSetoid) {a ,, (b , b!=0)} {c ,
|
||||
p2 = transitive (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (transitive p (transitive (symmetric *Associative) (*WellDefined reflexive cf=de)))
|
||||
p3 : (a * f) * d ∼ (b * e) * d
|
||||
p3 = transitive p2 (transitive (*WellDefined reflexive *Commutative) *Associative)
|
||||
p4 : (d ∼ 0R) || ((a * f) ∼ (b * e))
|
||||
p4 = cancelIntDom I (transitive *Commutative (transitive p3 *Commutative))
|
||||
p4 : ((d ∼ 0R) → False) → ((a * f) ∼ (b * e))
|
||||
p4 = cancelIntDom R I (transitive *Commutative (transitive p3 *Commutative))
|
||||
p5 : (a * f) ∼ (b * e)
|
||||
p5 with p4
|
||||
p5 | inl d=0 = exFalso (d!=0 d=0)
|
||||
p5 | inr x = x
|
||||
p5 = p4 d!=0
|
||||
|
Reference in New Issue
Block a user