mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-07 21:08:39 +00:00
Rem extra args from identity (#49)
This commit is contained in:
@@ -55,11 +55,11 @@ liftEquality f .f x .x refl refl = refl
|
||||
applyEquality : {a : _} {b : _} {A : Set a} {B : Set b} (f : A → B) → {x y : A} → (x ≡ y) → ((f x) ≡ (f y))
|
||||
applyEquality {A} {B} f {x} {.x} refl = refl
|
||||
|
||||
identityOfIndiscernablesLeft : {m n o : _} {A : Set m} {B : Set n} (a : A) (b : B) (c : A) → (prop : A → B → Set o) → (prop a b) → (a ≡ c) → (prop c b)
|
||||
identityOfIndiscernablesLeft a b .a prop pAB refl = pAB
|
||||
identityOfIndiscernablesLeft : {m n o : _} {A : Set m} {B : Set n} {a : A} {b : B} {c : A} → (prop : A → B → Set o) → (prop a b) → (a ≡ c) → (prop c b)
|
||||
identityOfIndiscernablesLeft {a = a} {b} {.a} prop pAB refl = pAB
|
||||
|
||||
identityOfIndiscernablesRight : {m n o : _} {A : Set m} {B : Set n} (a : A) (b c : B) → (prop : A → B → Set o) → (prop a b) → (b ≡ c) → (prop a c)
|
||||
identityOfIndiscernablesRight a b .b prop prAB refl = prAB
|
||||
identityOfIndiscernablesRight : {m n o : _} {A : Set m} {B : Set n} {a : A} {b c : B} → (prop : A → B → Set o) → (prop a b) → (b ≡ c) → (prop a c)
|
||||
identityOfIndiscernablesRight {a = a} {b} {.b} prop prAB refl = prAB
|
||||
|
||||
equalityCommutative : {a : _} {A : Set a} {x y : A} → (x ≡ y) → (y ≡ x)
|
||||
equalityCommutative refl = refl
|
||||
|
Reference in New Issue
Block a user