diff --git a/Everything/Safe.agda b/Everything/Safe.agda index de1b0a1..cb3efb0 100644 --- a/Everything/Safe.agda +++ b/Everything/Safe.agda @@ -56,6 +56,6 @@ open import Semirings.Definition open import Semirings.Solver open import Fields.CauchyCompletion.Group -open import Fields.CauchyCompletion.Comparison +open import Fields.CauchyCompletion.Approximation module Everything.Safe where diff --git a/Fields/CauchyCompletion/Approximation.agda b/Fields/CauchyCompletion/Approximation.agda index d91c555..bdabaa3 100644 --- a/Fields/CauchyCompletion/Approximation.agda +++ b/Fields/CauchyCompletion/Approximation.agda @@ -1,6 +1,7 @@ {-# OPTIONS --safe --warning=error --without-K --guardedness #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) +open import Orders open import Setoids.Setoids open import Rings.Definition open import Rings.Lemmas @@ -14,6 +15,8 @@ open import Setoids.Orders open import Functions open import LogicalFormulae open import Numbers.Naturals.Naturals +open import Numbers.Naturals.Order +open import Semirings.Definition module Fields.CauchyCompletion.Approximation {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {tOrder : SetoidTotalOrder {_<_ = _<_} pOrder} {R : Ring S _+_ _*_} (order : OrderedRing R tOrder) (F : Field R) (charNot2 : Setoid._∼_ S ((Ring.1R R) + (Ring.1R R)) (Ring.0R R) → False) where @@ -26,10 +29,174 @@ open Ring R open Group additiveGroup open Field F +open import Fields.Lemmas F +open import Fields.Orders.Lemmas {F = F} record { oRing = order } open import Rings.Orders.Lemmas(order) open import Fields.CauchyCompletion.Definition order F open import Fields.CauchyCompletion.Addition order F charNot2 open import Fields.CauchyCompletion.Setoid order F charNot2 +open import Fields.CauchyCompletion.Comparison order F charNot2 -approximate : (a : CauchyCompletion) → (ε : A) → Sg A (λ b → a +C (-C (injection b)) < ε) -approximate a ε = ? +chain : {a b : A} (c : CauchyCompletion) → (a r