Tidy up groups more (#68)

This commit is contained in:
Patrick Stevens
2019-11-08 18:00:16 +00:00
committed by GitHub
parent d30d14772e
commit 4db82b1afc
10 changed files with 418 additions and 284 deletions

View File

@@ -0,0 +1,29 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import Groups.Groups
open import Groups.Definition
open import Orders
open import Numbers.Integers.Integers
open import Setoids.Setoids
open import LogicalFormulae
open import Sets.FinSet
open import Functions
open import Sets.EquivalenceRelations
open import Numbers.Naturals.Naturals
open import Groups.Homomorphisms.Definition
open import Groups.Homomorphisms.Lemmas
open import Groups.Isomorphisms.Definition
open import Groups.Subgroups.Definition
open import Groups.Lemmas
open import Groups.Abelian.Definition
open import Groups.QuotientGroup.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Groups.Subgroups.Normal.Definition where
record NormalSubgroup {a} {b} {c} {d} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) (H : Group T _·B_) {f : B A} (hom : GroupHom H G f) : Set (a b c d) where
open Setoid S
field
subgroup : Subgroup G H hom
normal : {g : A} {h : B} Sg B (λ fromH (g ·A (f h)) ·A (Group.inverse G g) f fromH)

View File

@@ -0,0 +1,82 @@
{-# OPTIONS --safe --warning=error --without-K #-}
open import Groups.Groups
open import Groups.Definition
open import Orders
open import Numbers.Integers.Integers
open import Setoids.Setoids
open import LogicalFormulae
open import Sets.FinSet
open import Functions
open import Sets.EquivalenceRelations
open import Numbers.Naturals.Naturals
open import Groups.Homomorphisms.Definition
open import Groups.Homomorphisms.Lemmas
open import Groups.Isomorphisms.Definition
open import Groups.Subgroups.Definition
open import Groups.Lemmas
open import Groups.Abelian.Definition
open import Groups.QuotientGroup.Definition
open import Groups.Subgroups.Normal.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Groups.Subgroups.Normal.Lemmas where
data GroupKernelElement {a} {b} {c} {d} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) {H : Group T _·B_} {f : A B} (hom : GroupHom G H f) : Set (a b c d) where
kerOfElt : (x : A) (Setoid.__ T (f x) (Group.0G H)) GroupKernelElement G hom
groupKernel : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) {H : Group T _·B_} {f : A B} (hom : GroupHom G H f) Setoid (GroupKernelElement G hom)
Setoid.__ (groupKernel {S = S} G {H} {f} fHom) (kerOfElt x fx=0) (kerOfElt y fy=0) = Setoid.__ S x y
Equivalence.reflexive (Setoid.eq (groupKernel {S = S} G {H} {f} fHom)) {kerOfElt x x₁} = Equivalence.reflexive (Setoid.eq S)
Equivalence.symmetric (Setoid.eq (groupKernel {S = S} G {H} {f} fHom)) {kerOfElt x prX} {kerOfElt y prY} = Equivalence.symmetric (Setoid.eq S)
Equivalence.transitive (Setoid.eq (groupKernel {S = S} G {H} {f} fHom)) {kerOfElt x prX} {kerOfElt y prY} {kerOfElt z prZ} = Equivalence.transitive (Setoid.eq S)
groupKernelGroupOp : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) {H : Group T _·B_} {f : A B} (hom : GroupHom G H f) (GroupKernelElement G hom) (GroupKernelElement G hom) (GroupKernelElement G hom)
groupKernelGroupOp {T = T} {_·A_ = _+A_} G {H = H} hom (kerOfElt x prX) (kerOfElt y prY) = kerOfElt (x +A y) (transitive (GroupHom.groupHom hom) (transitive (Group.+WellDefined H prX prY) (Group.identLeft H)))
where
open Setoid T
open Equivalence eq
groupKernelGroup : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) {H : Group T _·B_} {f : A B} (hom : GroupHom G H f) Group (groupKernel G hom) (groupKernelGroupOp G hom)
Group.+WellDefined (groupKernelGroup G fHom) {kerOfElt x prX} {kerOfElt y prY} {kerOfElt a prA} {kerOfElt b prB} = Group.+WellDefined G
Group.0G (groupKernelGroup G fHom) = kerOfElt (Group.0G G) (imageOfIdentityIsIdentity fHom)
Group.inverse (groupKernelGroup {T = T} G {H = H} fHom) (kerOfElt x prX) = kerOfElt (Group.inverse G x) (transitive (homRespectsInverse fHom) (transitive (inverseWellDefined H prX) (invIdent H)))
where
open Setoid T
open Equivalence eq
Group.+Associative (groupKernelGroup {S = S} {_·A_ = _·A_} G fHom) {kerOfElt x prX} {kerOfElt y prY} {kerOfElt z prZ} = Group.+Associative G
Group.identRight (groupKernelGroup G fHom) {kerOfElt x prX} = Group.identRight G
Group.identLeft (groupKernelGroup G fHom) {kerOfElt x prX} = Group.identLeft G
Group.invLeft (groupKernelGroup G fHom) {kerOfElt x prX} = Group.invLeft G
Group.invRight (groupKernelGroup G fHom) {kerOfElt x prX} = Group.invRight G
injectionFromKernelToG : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) {H : Group T _·B_} {f : A B} (hom : GroupHom G H f) GroupKernelElement G hom A
injectionFromKernelToG G hom (kerOfElt x _) = x
injectionFromKernelToGIsHom : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) {H : Group T _·B_} {f : A B} (hom : GroupHom G H f) GroupHom (groupKernelGroup G hom) G (injectionFromKernelToG G hom)
GroupHom.groupHom (injectionFromKernelToGIsHom {S = S} G hom) {kerOfElt x prX} {kerOfElt y prY} = Equivalence.reflexive (Setoid.eq S)
GroupHom.wellDefined (injectionFromKernelToGIsHom G hom) {kerOfElt x prX} {kerOfElt y prY} i = i
groupKernelGroupIsSubgroup : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) {H : Group T _·B_} {f : A B} (hom : GroupHom G H f) Subgroup G (groupKernelGroup G hom) (injectionFromKernelToGIsHom G hom)
Subgroup.fInj (groupKernelGroupIsSubgroup {S = S} {T = T} G {f = f} hom) = record { wellDefined = λ {x} {y} GroupHom.wellDefined (injectionFromKernelToGIsHom G hom) {x} {y} ; injective = λ {x} {y} inj {x} {y} }
where
inj : {x : GroupKernelElement G hom} {y : GroupKernelElement G hom} Setoid.__ S (injectionFromKernelToG G hom x) (injectionFromKernelToG G hom y) Setoid.__ (groupKernel G hom) x y
inj {kerOfElt x prX} {kerOfElt y prY} = id
groupKernelGroupIsNormalSubgroup : {a b c d : _} {A : Set a} {B : Set c} {S : Setoid {a} {b} A} {T : Setoid {c} {d} B} {_·A_ : A A A} {_·B_ : B B B} (G : Group S _·A_) {H : Group T _·B_} {f : A B} (hom : GroupHom G H f) NormalSubgroup G (groupKernelGroup G hom) (injectionFromKernelToGIsHom G hom)
NormalSubgroup.subgroup (groupKernelGroupIsNormalSubgroup G hom) = groupKernelGroupIsSubgroup G hom
NormalSubgroup.normal (groupKernelGroupIsNormalSubgroup {S = S} {T = T} {_·A_ = _·A_} G {H = H} {f = f} hom) {g} {kerOfElt h prH} = kerOfElt ((g ·A h) ·A Group.inverse G g) ans , Equivalence.reflexive (Setoid.eq S)
where
open Setoid T
open Equivalence eq
ans : f ((g ·A h) ·A Group.inverse G g) Group.0G H
ans = transitive (GroupHom.groupHom hom) (transitive (Group.+WellDefined H (GroupHom.groupHom hom) reflexive) (transitive (Group.+WellDefined H (Group.+WellDefined H reflexive prH) reflexive) (transitive (Group.+WellDefined H (Group.identRight H) reflexive) (transitive (symmetric (GroupHom.groupHom hom)) (transitive (GroupHom.wellDefined hom (Group.invRight G)) (imageOfIdentityIsIdentity hom))))))
abelianGroupSubgroupIsNormal : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+A_ : A A A} {_+B_ : B B B} {underG : Group S _+A_} (G : AbelianGroup underG) {H : Group T _+B_} {f : B A} {hom : GroupHom H underG f} (s : Subgroup underG H hom) NormalSubgroup underG H hom
NormalSubgroup.subgroup (abelianGroupSubgroupIsNormal G H) = H
NormalSubgroup.normal (abelianGroupSubgroupIsNormal {S = S} {underG = G} record { commutative = commutative } H) {g} {h} = h , transitive (+WellDefined commutative reflexive) (transitive (symmetric +Associative) (transitive (+WellDefined reflexive invRight) identRight))
where
open Setoid S
open Group G
open Equivalence (Setoid.eq S)