mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-13 15:48:39 +00:00
Base expansions do approximate the number (#114)
This commit is contained in:
@@ -8,7 +8,6 @@ open import Rings.Definition
|
||||
open import Sets.EquivalenceRelations
|
||||
open import Rings.IntegralDomains.Definition
|
||||
|
||||
|
||||
module Rings.IntegralDomains.Lemmas {m n : _} {A : Set n} {S : Setoid {n} {m} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where
|
||||
|
||||
open Setoid S
|
||||
@@ -24,3 +23,6 @@ cancelIntDom {a} {b} {c} ab=ac a!=0 = transferToRight (Ring.additiveGroup R) t3
|
||||
t2 = transitive (transitive (Ring.*DistributesOver+ R) (Group.+WellDefined (Ring.additiveGroup R) reflexive (transferToRight' (Ring.additiveGroup R) (transitive (symmetric (Ring.*DistributesOver+ R)) (transitive (Ring.*WellDefined R reflexive (Group.invLeft (Ring.additiveGroup R))) (Ring.timesZero R)))))) t1
|
||||
t3 : (b + Group.inverse (Ring.additiveGroup R) c) ∼ Ring.0R R
|
||||
t3 = IntegralDomain.intDom I t2 a!=0
|
||||
|
||||
cancelIntDom' : {a b c : A} → (a * c) ∼ (b * c) → (c ∼ Ring.0R R → False) → a ∼ b
|
||||
cancelIntDom' pr n = cancelIntDom (transitive *Commutative (transitive pr *Commutative)) n
|
||||
|
Reference in New Issue
Block a user