Lots of refactoring towards partially-ordered ring R (#109)

This commit is contained in:
Patrick Stevens
2020-04-10 19:00:57 +01:00
committed by GitHub
parent 1cff95c652
commit 412edaf4c7
19 changed files with 1015 additions and 778 deletions

View File

@@ -39,8 +39,9 @@ open import Fields.CauchyCompletion.Approximation order F charNot2
0!=1 : {e : A} (0G < e) 0R 1R False
0!=1 {e} 0<e 0=1 = irreflexive (<WellDefined (Equivalence.reflexive eq) (oneZeroImpliesAllZero R 0=1) 0<e)
littleLemma : {a b c d : A} ((a * b) + inverse (c * d)) ((a * (b + inverse d)) + (d * (a + inverse c)))
littleLemma {a} {b} {c} {d} = Equivalence.transitive eq (Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq identLeft) (+WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (+WellDefined (Equivalence.transitive eq (ringMinusExtracts R) (inverseWellDefined additiveGroup *Commutative)) (Equivalence.reflexive eq)) (invLeft {d * a}))) (Equivalence.transitive eq (Equivalence.symmetric eq (ringMinusExtracts' R)) *Commutative))) (Equivalence.symmetric eq +Associative))) (+Associative)) (Equivalence.symmetric eq (+WellDefined (*DistributesOver+) (*DistributesOver+)))
private
littleLemma : {a b c d : A} ((a * b) + inverse (c * d)) ((a * (b + inverse d)) + (d * (a + inverse c)))
littleLemma {a} {b} {c} {d} = Equivalence.transitive eq (Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq identLeft) (+WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (+WellDefined (Equivalence.transitive eq (ringMinusExtracts R) (inverseWellDefined additiveGroup *Commutative)) (Equivalence.reflexive eq)) (invLeft {d * a}))) (Equivalence.transitive eq (Equivalence.symmetric eq (ringMinusExtracts' R)) *Commutative))) (Equivalence.symmetric eq +Associative))) (+Associative)) (Equivalence.symmetric eq (+WellDefined (*DistributesOver+) (*DistributesOver+)))
_*C_ : CauchyCompletion CauchyCompletion CauchyCompletion
CauchyCompletion.elts (record { elts = a ; converges = aConv } *C record { elts = b ; converges = bConv }) = apply _*_ a b
@@ -99,7 +100,7 @@ CauchyCompletion.converges (record { elts = a ; converges = aConv } *C record {
N :
N = (Na +N (Nb +N (reallyNa +N reallyNb)))
ans : {m : } {n : } N <N m N <N n abs (index (apply _*_ a b) m + inverse (index (apply _*_ a b) n)) < e
ans {m} {n} N<m N<n rewrite indexAndApply a b _*_ {m} | indexAndApply a b _*_ {n} = ans'
ans {m} {n} N<m N<n rewrite indexAndApply a b _*_ {m} | indexAndApply a b _*_ {n} = ans'''
where
Na<m : Na <N m
Na<m = inequalityShrinkLeft N<m
@@ -144,10 +145,10 @@ CauchyCompletion.converges (record { elts = a ; converges = aConv } *C record {
ans'' with foo
... | inl pr = SetoidPartialOrder.<Transitive pOrder (<WellDefined groupIsAbelian groupIsAbelian (<WellDefined (+WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq bar')) (+WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq bar)) (orderRespectsAddition pr 0R))) q
... | inr pr = <WellDefined (Equivalence.transitive eq (Equivalence.symmetric eq identRight) (+WellDefined (Equivalence.symmetric eq bar') (Equivalence.symmetric eq (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (absWellDefined _ _ (Equivalence.symmetric eq pr)) absZeroIsZero)) timesZero)))) (Equivalence.reflexive eq) 0<e
ans' : abs ((index a m * index b m) + inverse (index a n * index b n)) < e
ans' with triangleInequality (index a m * (index b m + inverse (index b n))) (index b n * (index a m + inverse (index a n)))
ans''' : abs ((index a m * index b m) + inverse (index a n * index b n)) < e
ans''' with triangleInequality (index a m * (index b m + inverse (index b n))) (index b n * (index a m + inverse (index a n)))
... | inl less = <WellDefined (Equivalence.symmetric eq (absWellDefined ((index a m * index b m) + (inverse (index a n * index b n))) (((index a m) * (index b m + (inverse (index b n)))) + ((index b n) * (index a m + inverse (index a n)))) littleLemma)) (Equivalence.reflexive eq) (SetoidPartialOrder.<Transitive pOrder less (<WellDefined (+WellDefined (Equivalence.symmetric eq (absRespectsTimes (index a m) _)) (Equivalence.symmetric eq (absRespectsTimes (index b n) _))) (Equivalence.reflexive eq) p))
... | inr equal rewrite indexAndApply a b _*_ {m} | indexAndApply a b _*_ {n} = <WellDefined (Equivalence.symmetric eq (absWellDefined ((index a m * index b m) + (inverse (index a n * index b n))) (((index a m) * (index b m + (inverse (index b n)))) + ((index b n) * (index a m + inverse (index a n)))) littleLemma)) (Equivalence.reflexive eq) (<WellDefined (Equivalence.symmetric eq equal) (Equivalence.reflexive eq) ((<WellDefined (+WellDefined (Equivalence.symmetric eq (absRespectsTimes (index a m) _)) (Equivalence.symmetric eq (absRespectsTimes (index b n) _))) (Equivalence.reflexive eq) p)))
... | inr equal = <WellDefined {_ + _} {abs _} {e} {e} (symmetric (transitive (transitive (absWellDefined ((index a m * index b m) + (inverse (index a n * index b n))) (((index a m) * (index b m + (inverse (index b n)))) + ((index b n) * (index a m + inverse (index a n)))) littleLemma) equal) (+WellDefined (absRespectsTimes (index a m) _) (absRespectsTimes (index b n) _)))) reflexive p
*CCommutative : {a b : CauchyCompletion} Setoid.__ cauchyCompletionSetoid (a *C b) (b *C a)
*CCommutative {a} {b} ε 0<e = 0 , ans
@@ -162,17 +163,18 @@ abstract
multiplicationWellDefinedLeft' : (0!=1 : 0R 1R False) (a b c : CauchyCompletion) Setoid.__ cauchyCompletionSetoid a b Setoid.__ cauchyCompletionSetoid (a *C c) (b *C c)
multiplicationWellDefinedLeft' 0!=1 a b c a=b ε 0<e = N , ans
where
cBoundAndPr : Sg A (λ b Sg (λ N (m : ) (N <N m) (abs (index (CauchyCompletion.elts c) m)) < b))
cBoundAndPr = boundModulus c
cBound : A
cBound with cBoundAndPr
... | a , _ = a
cBoundN :
cBoundN with cBoundAndPr
... | _ , (N , _) = N
cBoundPr : (m : ) (cBoundN <N m) (abs (index (CauchyCompletion.elts c) m)) < cBound
cBoundPr with cBoundAndPr
... | _ , (_ , pr) = pr
abstract
cBoundAndPr : Sg A (λ b Sg (λ N (m : ) (N <N m) (abs (index (CauchyCompletion.elts c) m)) < b))
cBoundAndPr = boundModulus c
cBound : A
cBound with cBoundAndPr
... | a , _ = a
cBoundN :
cBoundN with cBoundAndPr
... | _ , (N , _) = N
cBoundPr : (m : ) (cBoundN <N m) (abs (index (CauchyCompletion.elts c) m)) < cBound
cBoundPr with cBoundAndPr
... | _ , (_ , pr) = pr
0<cBound : 0G < cBound
0<cBound with totality 0G cBound
0<cBound | inl (inl 0<cBound) = 0<cBound
@@ -197,10 +199,9 @@ abstract
cBounded : (m : ) (N <N m) abs (index (CauchyCompletion.elts c) m) < cBound
cBounded m N<m = cBoundPr m (inequalityShrinkRight N<m)
a-bSmall : (m : ) N <N m abs ((index (CauchyCompletion.elts a) m) + inverse (index (CauchyCompletion.elts b) m)) < e/c
a-bSmall m N<m with abPr {m} (inequalityShrinkLeft N<m)
... | f rewrite indexAndApply (CauchyCompletion.elts a) (map inverse (CauchyCompletion.elts b)) _+_ {m} | equalityCommutative (mapAndIndex (CauchyCompletion.elts b) inverse m) = f
a-bSmall m N<m = <WellDefined (absWellDefined _ _ (transitive (identityOfIndiscernablesLeft __ reflexive (equalityCommutative (indexAndApply (CauchyCompletion.elts a) (map inverse (CauchyCompletion.elts b)) _+_ {m}))) (+WellDefined reflexive (identityOfIndiscernablesLeft __ reflexive (mapAndIndex (CauchyCompletion.elts b) inverse m))))) reflexive (abPr {m} (inequalityShrinkLeft N<m))
ans : {m : } N <N m abs (index (apply _+_ (apply _*_ (CauchyCompletion.elts a) (CauchyCompletion.elts c)) (map inverse (apply _*_ (CauchyCompletion.elts b) (CauchyCompletion.elts c)))) m) < ε
ans {m} N<m rewrite indexAndApply (apply _*_ (CauchyCompletion.elts a) (CauchyCompletion.elts c)) (map inverse (apply _*_ (CauchyCompletion.elts b) (CauchyCompletion.elts c))) _+_ {m} | equalityCommutative (mapAndIndex (apply _*_ (CauchyCompletion.elts b) (CauchyCompletion.elts c)) inverse m) | indexAndApply (CauchyCompletion.elts b) (CauchyCompletion.elts c) _*_ {m} | indexAndApply (CauchyCompletion.elts a) (CauchyCompletion.elts c) _*_ {m} = <WellDefined (absWellDefined _ _ (+WellDefined (Equivalence.reflexive eq) (ringMinusExtracts' R))) (Equivalence.reflexive eq) (<WellDefined (absWellDefined ((index (CauchyCompletion.elts a) m + inverse (index (CauchyCompletion.elts b) m)) * index (CauchyCompletion.elts c) m) _ (Equivalence.transitive eq (Equivalence.transitive eq *Commutative *DistributesOver+) (+WellDefined *Commutative *Commutative))) (Equivalence.reflexive eq) (<WellDefined (Equivalence.symmetric eq (absRespectsTimes _ _)) (Equivalence.reflexive eq) (<WellDefined (Equivalence.reflexive eq) e/cPr (ans' (index (CauchyCompletion.elts a) m) (index (CauchyCompletion.elts b) m) (index (CauchyCompletion.elts c) m) (a-bSmall m N<m) (cBounded m N<m)))))
ans {m} N<m = <WellDefined (absWellDefined _ _ (transitive (+WellDefined (identityOfIndiscernablesLeft __ reflexive (indexAndApply _ _ _*_ {m})) (transitive (transitive (ringMinusExtracts' R) (inverseWellDefined additiveGroup (identityOfIndiscernablesRight __ reflexive (equalityCommutative (indexAndApply _ _ _*_ {m}))))) (identityOfIndiscernablesLeft __ reflexive (equalityCommutative (mapAndIndex _ inverse m))))) (identityOfIndiscernablesLeft __ reflexive (indexAndApply _ _ _+_ {m})))) reflexive (<WellDefined (absWellDefined ((index (CauchyCompletion.elts a) m + inverse (index (CauchyCompletion.elts b) m)) * index (CauchyCompletion.elts c) m) _ (Equivalence.transitive eq (Equivalence.transitive eq *Commutative *DistributesOver+) (+WellDefined *Commutative *Commutative))) (Equivalence.reflexive eq) (<WellDefined (Equivalence.symmetric eq (absRespectsTimes _ _)) (Equivalence.reflexive eq) (<WellDefined (Equivalence.reflexive eq) e/cPr (ans' (index (CauchyCompletion.elts a) m) (index (CauchyCompletion.elts b) m) (index (CauchyCompletion.elts c) m) (a-bSmall m N<m) (cBounded m N<m)))))
where
ans' : (a b c : A) abs (a + inverse b) < e/c abs c < cBound (abs (a + inverse b) * abs c) < (e/c * cBound)
ans' a b c a-b<e/c c<bound with totality 0R c