mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-20 18:48:39 +00:00
Move towards base-n expansions (#112)
This commit is contained in:
30
Rings/Orders/Total/Cauchy.agda
Normal file
30
Rings/Orders/Total/Cauchy.agda
Normal file
@@ -0,0 +1,30 @@
|
||||
{-# OPTIONS --safe --warning=error --without-K --guardedness #-}
|
||||
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
open import Setoids.Setoids
|
||||
open import Rings.Definition
|
||||
open import Rings.Orders.Partial.Definition
|
||||
open import Rings.Orders.Total.Definition
|
||||
open import Groups.Definition
|
||||
open import Sets.EquivalenceRelations
|
||||
open import Sequences
|
||||
open import Setoids.Orders
|
||||
open import Functions
|
||||
open import LogicalFormulae
|
||||
open import Numbers.Naturals.Semiring
|
||||
open import Numbers.Naturals.Order
|
||||
|
||||
module Rings.Orders.Total.Cauchy {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) where
|
||||
|
||||
open Setoid S
|
||||
open SetoidTotalOrder (TotallyOrderedRing.total order)
|
||||
open SetoidPartialOrder pOrder
|
||||
open Equivalence eq
|
||||
open TotallyOrderedRing order
|
||||
open Ring R
|
||||
open Group additiveGroup
|
||||
|
||||
open import Rings.Orders.Total.Lemmas order
|
||||
|
||||
cauchy : Sequence A → Set (m ⊔ o)
|
||||
cauchy s = ∀ (ε : A) → (0R < ε) → Sg ℕ (λ N → ∀ {m n : ℕ} → (N <N m) → (N <N n) → abs ((index s m) -R (index s n)) < ε)
|
Reference in New Issue
Block a user