mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-20 18:48:39 +00:00
Move towards base-n expansions (#112)
This commit is contained in:
@@ -27,9 +27,12 @@ open Group additiveGroup
|
||||
open Field F
|
||||
|
||||
open import Rings.Orders.Total.Lemmas order
|
||||
open import Rings.Orders.Total.Cauchy order
|
||||
open import Groups.Lemmas additiveGroup
|
||||
|
||||
cauchy : Sequence A → Set (m ⊔ o)
|
||||
cauchy s = ∀ (ε : A) → (0R < ε) → Sg ℕ (λ N → ∀ {m n : ℕ} → (N <N m) → (N <N n) → abs ((index s m) -R (index s n)) < ε)
|
||||
cauchyWellDefined : {s1 s2 : Sequence A} → ((m : ℕ) → index s1 m ∼ index s2 m) → cauchy s1 → cauchy s2
|
||||
cauchyWellDefined {s1} {s2} prop c e 0<e with c e 0<e
|
||||
... | N , pr = N , λ {m} {n} N<m N<n → <WellDefined (absWellDefined _ _ (+WellDefined (prop m) (inverseWellDefined (prop n)))) reflexive (pr N<m N<n)
|
||||
|
||||
record CauchyCompletion : Set (m ⊔ o) where
|
||||
field
|
||||
|
Reference in New Issue
Block a user