mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-18 17:48:40 +00:00
Move towards base-n expansions (#112)
This commit is contained in:
@@ -18,7 +18,7 @@ open import Numbers.Naturals.Order
|
||||
open import Numbers.Naturals.Order.Lemmas
|
||||
open import Semirings.Definition
|
||||
|
||||
module Fields.CauchyCompletion.Comparison {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) (charNot2 : Setoid._∼_ S ((Ring.1R R) + (Ring.1R R)) (Ring.0R R) → False) where
|
||||
module Fields.CauchyCompletion.Comparison {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) where
|
||||
|
||||
open Setoid S
|
||||
open SetoidTotalOrder (TotallyOrderedRing.total order)
|
||||
@@ -34,7 +34,8 @@ open import Rings.Orders.Partial.Lemmas pRing
|
||||
open import Rings.Orders.Total.Lemmas order
|
||||
open import Fields.Lemmas F
|
||||
open import Fields.CauchyCompletion.Definition order F
|
||||
open import Fields.CauchyCompletion.Setoid order F charNot2
|
||||
open import Fields.CauchyCompletion.Setoid order F
|
||||
open import Fields.Orders.Total.Lemmas {F = F} (record { oRing = order })
|
||||
|
||||
-- "<C rational", where the r indicates where the rational number goes
|
||||
record _<Cr_ (a : CauchyCompletion) (b : A) : Set (m ⊔ o) where
|
||||
|
Reference in New Issue
Block a user