List is a monad (#89)

This commit is contained in:
Patrick Stevens
2019-12-08 12:11:49 +00:00
committed by GitHub
parent 33098e94b0
commit 2f64111407
2 changed files with 33 additions and 0 deletions

View File

@@ -26,3 +26,32 @@ flatten=flatten' (l :: ls) = applyEquality (l ++_) (flatten=flatten' ls)
lengthFlatten : {a : _} {A : Set a} (l : List (List A)) length (flatten l) (fold _+N_ zero (map length l))
lengthFlatten [] = refl
lengthFlatten (l :: ls) rewrite lengthConcat l (flatten ls) | lengthFlatten ls = refl
flattenConcat : {a : _} {A : Set a} (l1 l2 : List (List A)) flatten (l1 ++ l2) (flatten l1) ++ (flatten l2)
flattenConcat [] l2 = refl
flattenConcat (l1 :: ls) l2 rewrite flattenConcat ls l2 | concatAssoc l1 (flatten ls) (flatten l2) = refl
pure : {a : _} {A : Set a} A List A
pure a = [ a ]
bind : {a b : _} {A : Set a} {B : Set b} (f : A List B) List A List B
bind f l = flatten (map f l)
private
leftIdentLemma : {a : _} {A : Set a} (xs : List A) flatten (map pure xs) xs
leftIdentLemma [] = refl
leftIdentLemma (x :: xs) rewrite leftIdentLemma xs = refl
leftIdent : {a b : _} {A : Set a} {B : Set b} (f : A List B) {x : A} bind pure (f x) f x
leftIdent f {x} with f x
leftIdent f {x} | [] = refl
leftIdent f {x} | y :: ys rewrite leftIdentLemma ys = refl
rightIdent : {a b : _} {A : Set a} {B : Set b} (f : A List B) {x : A} bind f (pure x) f x
rightIdent f {x} with f x
rightIdent f {x} | [] = refl
rightIdent f {x} | y :: ys rewrite appendEmptyList ys = refl
associative : {a b c : _} {A : Set a} {B : Set b} {C : Set c} (f : A List B) (g : B List C) {x : List A} bind g (bind f x) bind (λ a bind g (f a)) x
associative f g {[]} = refl
associative f g {x :: xs} rewrite mapConcat (f x) (flatten (map f xs)) g | flattenConcat (map g (f x)) (map g (flatten (map f xs))) = applyEquality (flatten (map g (f x)) ++_) (associative f g {xs})