mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-20 10:38:39 +00:00
Free-group lemmas (#106)
This commit is contained in:
18
Setoids/Cardinality/Infinite/Definition.agda
Normal file
18
Setoids/Cardinality/Infinite/Definition.agda
Normal file
@@ -0,0 +1,18 @@
|
||||
{-# OPTIONS --safe --warning=error --without-K #-}
|
||||
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
open import LogicalFormulae
|
||||
open import Functions
|
||||
open import Numbers.Naturals.Definition
|
||||
open import Sets.FinSet.Definition
|
||||
open import Setoids.Setoids
|
||||
|
||||
module Setoids.Cardinality.Infinite.Definition where
|
||||
|
||||
InfiniteSetoid : {a b : _} {A : Set a} (S : Setoid {a} {b} A) → Set (a ⊔ b)
|
||||
InfiniteSetoid {A = A} S = (n : ℕ) → (f : FinSet n → A) → (SetoidBijection (reflSetoid (FinSet n)) S f) → False
|
||||
|
||||
record DedekindInfiniteSetoid {a b : _} {A : Set a} (S : Setoid {a} {b} A) : Set (a ⊔ b) where
|
||||
field
|
||||
inj : ℕ → A
|
||||
isInjection : SetoidInjection (reflSetoid ℕ) S inj
|
Reference in New Issue
Block a user