Free-group lemmas (#106)

This commit is contained in:
Patrick Stevens
2020-04-05 11:09:12 +01:00
committed by GitHub
parent 61b5f8acc5
commit 2f07a8e972
18 changed files with 327 additions and 188 deletions

View File

@@ -0,0 +1,47 @@
{-# OPTIONS --safe --warning=error #-}
open import Numbers.Naturals.Semiring
open import Groups.FreeProduct.Definition
open import Groups.FreeProduct.Setoid
open import Groups.FreeProduct.Group
open import Groups.Definition
open import Groups.Homomorphisms.Definition
open import Groups.Isomorphisms.Definition
open import LogicalFormulae
open import Numbers.Integers.Addition
open import Numbers.Integers.Definition
open import Groups.FreeGroup.Definition
open import Groups.FreeGroup.Word
open import Groups.FreeGroup.Group
open import Groups.FreeGroup.UniversalProperty
open import Setoids.Setoids
module Groups.FreeProduct.Lemmas {i : _} {I : Set i} (decidableIndex : (x y : I) ((x y) || ((x y) False))) where
private
f : ReducedWord decidableIndex ReducedSequence decidableIndex (λ _ DecideEquality) (λ _ Group)
f = universalPropertyFunction decidableIndex (FreeProductGroup decidableIndex (λ _ DecideEquality) (λ _ Group)) λ i nonempty i (ofEmpty i (nonneg 1) λ ())
freeProductIso : GroupHom (freeGroup decidableIndex) (FreeProductGroup decidableIndex (λ _ DecideEquality) (λ _ Group)) f
freeProductIso = universalPropertyHom decidableIndex (FreeProductGroup decidableIndex (λ _ DecideEquality) (λ _ Group)) (λ i nonempty i (ofEmpty i (nonneg 1) λ ()))
freeProductInj : (x y : ReducedWord decidableIndex) (decidableIndex =RP λ _ DecideEquality) (λ _ Group) (f x) (f y) x y
freeProductInj empty empty pr = refl
freeProductInj empty (prependLetter (ofLetter x₁) y x) pr = exFalso {!!}
freeProductInj empty (prependLetter (ofInv x₁) y x) pr = {!!}
freeProductInj (prependLetter letter x x₁) y pr = {!!}
freeProductZ : GroupsIsomorphic (freeGroup decidableIndex) (FreeProductGroup decidableIndex (λ _ DecideEquality) (λ _ Group))
GroupsIsomorphic.isomorphism (freeProductZ) = universalPropertyFunction decidableIndex (FreeProductGroup decidableIndex (λ _ DecideEquality) (λ _ Group)) λ i nonempty i (ofEmpty i (nonneg 1) λ ())
GroupIso.groupHom (GroupsIsomorphic.proof (freeProductZ)) = freeProductIso
SetoidInjection.wellDefined (SetoidBijection.inj (GroupIso.bij (GroupsIsomorphic.proof (freeProductZ)))) = GroupHom.wellDefined (freeProductIso)
SetoidInjection.injective (SetoidBijection.inj (GroupIso.bij (GroupsIsomorphic.proof (freeProductZ)))) {x} {y} = freeProductInj x y
SetoidSurjection.wellDefined (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof (freeProductZ)))) = GroupHom.wellDefined freeProductIso
SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof (freeProductZ)))) {empty} = empty , record {}
SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof (freeProductZ)))) {nonempty i (ofEmpty .i (nonneg zero) nonZero)} = exFalso (nonZero refl)
SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof (freeProductZ)))) {nonempty i (ofEmpty .i (nonneg (succ x)) nonZero)} = prependLetter (ofLetter i) empty (wordEmpty refl) , {!!}
SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof (freeProductZ)))) {nonempty i (ofEmpty .i (negSucc x) nonZero)} = {!!}
SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof (freeProductZ)))) {nonempty i (prependLetter .i g nonZero x x₁)} = {!!}
freeProductNonAbelian : {!!}
freeProductNonAbelian = {!!}