diff --git a/Fields/FieldOfFractions.agda b/Fields/FieldOfFractions.agda index 677ab45..a32c425 100644 --- a/Fields/FieldOfFractions.agda +++ b/Fields/FieldOfFractions.agda @@ -2,6 +2,7 @@ open import LogicalFormulae open import Groups.Groups +open import Groups.GroupDefinition open import Groups.GroupsLemmas open import Rings.RingDefinition open import Rings.RingLemmas @@ -9,7 +10,6 @@ open import Rings.IntegralDomains open import Fields.Fields open import Functions open import Setoids.Setoids -open import Setoids.Orders open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) @@ -229,39 +229,3 @@ module Fields.FieldOfFractions where open Reflexive (Equivalence.reflexiveEq (Setoid.eq S)) open Transitive (Equivalence.transitiveEq (Setoid.eq S)) open Symmetric (Equivalence.symmetricEq (Setoid.eq S)) - - fieldOfFractionsNonnegDenom : {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} {_<_ : Rel {_} {c} A} {pOrder : SetoidPartialOrder S _<_} {tOrder : SetoidTotalOrder pOrder} (I : IntegralDomain R) → (order : OrderedRing R tOrder) → (a1 : fieldOfFractionsSet I) → Sg (fieldOfFractionsSet I) (λ b1 → (Setoid._∼_ (fieldOfFractionsSetoid I) a1 b1) && ((Ring.0R R) < underlying (_&&_.snd b1))) - fieldOfFractionsNonnegDenom {R = R} {tOrder = tOrder} I order (num ,, (denom , denom!=0)) with SetoidTotalOrder.totality tOrder (Ring.0R R) denom - fieldOfFractionsNonnegDenom {R = R} {tOrder = tOrder} I order (num ,, (denom , denom!=0)) | inl (inl 0