mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-12 15:18:40 +00:00
Rename order transitivity (#62)
This commit is contained in:
@@ -33,7 +33,7 @@ module Numbers.Primes.IntegerFactorisation where
|
||||
lemma' {a} {b} pr rewrite Semiring.sumZeroRight ℕSemiring (a *N zero) | Semiring.productZeroRight ℕSemiring a = equalityCommutative pr
|
||||
|
||||
primeFactorisation : {p : ℕ} → (pr : Prime p) → factorisationNonunit 1 p
|
||||
primeFactorisation {p} record { p>1 = p>1 ; pr = pr } = record {1<a = p>1 ; firstFactor = p ; firstFactorNontrivial = p>1 ; firstFactorBiggerMin = inl p>1 ; firstFactorDivision = record { quot = 1 ; rem = 0 ; pr = lemma p ; remIsSmall = zeroIsValidRem p ; quotSmall = inl (TotalOrder.transitive ℕTotalOrder (le zero refl) p>1) } ; firstFactorDivides = refl ; firstFactorPrime = record { p>1 = p>1 ; pr = pr} ; otherFactors = inl record { fst = refl ; snd = refl } ; otherFactorsNumber = 0 }
|
||||
primeFactorisation {p} record { p>1 = p>1 ; pr = pr } = record {1<a = p>1 ; firstFactor = p ; firstFactorNontrivial = p>1 ; firstFactorBiggerMin = inl p>1 ; firstFactorDivision = record { quot = 1 ; rem = 0 ; pr = lemma p ; remIsSmall = zeroIsValidRem p ; quotSmall = inl (TotalOrder.<Transitive ℕTotalOrder (le zero refl) p>1) } ; firstFactorDivides = refl ; firstFactorPrime = record { p>1 = p>1 ; pr = pr} ; otherFactors = inl record { fst = refl ; snd = refl } ; otherFactorsNumber = 0 }
|
||||
where
|
||||
proof : (s : ℕ) → s *N 1 +N 0 ≡ s
|
||||
proof s rewrite Semiring.sumZeroRight ℕSemiring (s *N 1) | multiplicationNIsCommutative s 1 | Semiring.sumZeroRight ℕSemiring s = refl
|
||||
@@ -97,9 +97,9 @@ module Numbers.Primes.IntegerFactorisation where
|
||||
factorIntegerLemma (succ zero) indHyp = inl (succPreservesInequality (succIsPositive 0))
|
||||
factorIntegerLemma (succ (succ x)) indHyp with everyNumberHasAPrimeFactor {succ (succ x)} (succPreservesInequality (succIsPositive x))
|
||||
factorIntegerLemma (succ (succ x)) indHyp | a , record { fst = record { fst = divides record {quot = zero ; rem = .0 ; pr = ssxDivA ; remIsSmall = r } refl ; snd = 1<a }; snd = record { fst = primeA ; snd = smallerFactors } } rewrite Semiring.sumZeroRight ℕSemiring (a *N zero) | multiplicationNIsCommutative a 0 = exFalso (naughtE ssxDivA)
|
||||
factorIntegerLemma (succ (succ x)) indHyp | a , record { fst = record { fst = divides record {quot = succ zero ; rem = .0 ; pr = ssxDivA ; remIsSmall = r } refl ; snd = 1<a }; snd = record { fst = primeA ; snd = smallerFactors } } = inr record { 1<a = succPreservesInequality (succIsPositive x) ; firstFactor = a ; firstFactorNontrivial = Prime.p>1 primeA ; firstFactorBiggerMin = inl (Prime.p>1 primeA) ; firstFactorDivision = record { quot = 1 ; rem = 0 ; pr = ssxDivA ; remIsSmall = r ; quotSmall = inl (TotalOrder.transitive ℕTotalOrder (le zero refl) 1<a) } ; firstFactorDivides = refl ; firstFactorPrime = record { p>1 = Prime.p>1 primeA ; pr = Prime.pr primeA } ; otherFactors = inl record { fst = refl ; snd = refl } ; otherFactorsNumber = 0 }
|
||||
factorIntegerLemma (succ (succ x)) indHyp | a , record { fst = record { fst = divides record {quot = succ zero ; rem = .0 ; pr = ssxDivA ; remIsSmall = r } refl ; snd = 1<a }; snd = record { fst = primeA ; snd = smallerFactors } } = inr record { 1<a = succPreservesInequality (succIsPositive x) ; firstFactor = a ; firstFactorNontrivial = Prime.p>1 primeA ; firstFactorBiggerMin = inl (Prime.p>1 primeA) ; firstFactorDivision = record { quot = 1 ; rem = 0 ; pr = ssxDivA ; remIsSmall = r ; quotSmall = inl (TotalOrder.<Transitive ℕTotalOrder (le zero refl) 1<a) } ; firstFactorDivides = refl ; firstFactorPrime = record { p>1 = Prime.p>1 primeA ; pr = Prime.pr primeA } ; otherFactors = inl record { fst = refl ; snd = refl } ; otherFactorsNumber = 0 }
|
||||
|
||||
factorIntegerLemma (succ (succ x)) indHyp | a , record { fst = record { fst = divides record {quot = succ (succ qu) ; rem = .0 ; pr = ssxDivA ; remIsSmall = remSmall } refl ; snd = 1<a }; snd = record { fst = primeA ; snd = smallerFactors } } = inr record { 1<a = succPreservesInequality (succIsPositive x) ; firstFactor = a ; firstFactorNontrivial = Prime.p>1 primeA ; firstFactorBiggerMin = inl (Prime.p>1 primeA) ; firstFactorDivision = record { quot = succ (succ qu) ; rem = 0 ; pr = ssxDivA ; remIsSmall = remSmall ; quotSmall = inl (TotalOrder.transitive ℕTotalOrder (le zero refl) 1<a) } ; firstFactorDivides = refl ; firstFactorPrime = record { p>1 = Prime.p>1 primeA ; pr = Prime.pr primeA } ; otherFactors = inr record {fst = succPreservesInequality (succIsPositive qu) ; snd = factNonunit} ; otherFactorsNumber = succ (factorisationNonunit.otherFactorsNumber indHypRes') }
|
||||
factorIntegerLemma (succ (succ x)) indHyp | a , record { fst = record { fst = divides record {quot = succ (succ qu) ; rem = .0 ; pr = ssxDivA ; remIsSmall = remSmall } refl ; snd = 1<a }; snd = record { fst = primeA ; snd = smallerFactors } } = inr record { 1<a = succPreservesInequality (succIsPositive x) ; firstFactor = a ; firstFactorNontrivial = Prime.p>1 primeA ; firstFactorBiggerMin = inl (Prime.p>1 primeA) ; firstFactorDivision = record { quot = succ (succ qu) ; rem = 0 ; pr = ssxDivA ; remIsSmall = remSmall ; quotSmall = inl (TotalOrder.<Transitive ℕTotalOrder (le zero refl) 1<a) } ; firstFactorDivides = refl ; firstFactorPrime = record { p>1 = Prime.p>1 primeA ; pr = Prime.pr primeA } ; otherFactors = inr record {fst = succPreservesInequality (succIsPositive qu) ; snd = factNonunit} ; otherFactorsNumber = succ (factorisationNonunit.otherFactorsNumber indHypRes') }
|
||||
where
|
||||
indHypRes : ((succ (succ qu)) <N 2) || factorisationNonunit 1 (succ (succ qu))
|
||||
indHypRes = indHyp (succ (succ qu)) (lemma2 {a} {succ (succ qu)} {succ (succ x)} 1<a (succIsPositive (succ qu)) ssxDivA)
|
||||
@@ -157,7 +157,7 @@ module Numbers.Primes.IntegerFactorisation where
|
||||
i<=firstFactor rewrite p=firstFact = firstFactorBiggerMin
|
||||
bad : False
|
||||
bad with i<=firstFactor
|
||||
... | inl t = TotalOrder.irreflexive ℕTotalOrder (TotalOrder.transitive ℕTotalOrder t p<i)
|
||||
... | inl t = TotalOrder.irreflexive ℕTotalOrder (TotalOrder.<Transitive ℕTotalOrder t p<i)
|
||||
... | inr eq rewrite eq = TotalOrder.irreflexive ℕTotalOrder p<i
|
||||
prf zero ind record { 1<a = 1<a ; firstFactor = firstFactor ; firstFactorNontrivial = firstFactorNontrivial ; firstFactorBiggerMin = firstFactorBiggerMin ; firstFactorDivision = firstFactorDivision ; firstFactorDivides = firstFactorDivides ; firstFactorPrime = firstFactorPrime ; otherFactors = (inr otherFact) } p|x = zeroNeverGreater 1<a
|
||||
prf (succ x) ind record { 1<a = 1<a ; firstFactor = firstFactor ; firstFactorNontrivial = firstFactorNontrivial ; firstFactorBiggerMin = firstFactorBiggerMin ; firstFactorDivision = firstFactorDivision ; firstFactorDivides = firstFactorDivides ; firstFactorPrime = firstFactorPrime ; otherFactors = (inr otherFact) } p|x = ind (divisionAlgResult.quot firstFactorDivision) (lemma4 {divisionAlgResult.quot firstFactorDivision} {firstFactor} {divisionAlgResult.rem firstFactorDivision} {x} (divisionAlgResult.pr (firstFactorDivision)) (primesAreBiggerThanOne firstFactorPrime)) (canReduceFactorBound' (_&&_.snd otherFact) firstFactorBiggerMin) (p|q p|ffOrQ)
|
||||
|
@@ -229,16 +229,16 @@ module Numbers.Primes.PrimeNumbers where
|
||||
numberLessThanOrder : (n : ℕ) → TotalOrder (numberLessThan n)
|
||||
PartialOrder._<_ (TotalOrder.order (numberLessThanOrder n)) = λ a b → (numberLessThan.a a) <N numberLessThan.a b
|
||||
PartialOrder.irreflexive (TotalOrder.order (numberLessThanOrder n)) pr = TotalOrder.irreflexive ℕTotalOrder pr
|
||||
PartialOrder.transitive (TotalOrder.order (numberLessThanOrder n)) pr1 pr2 = orderIsTransitive pr1 pr2
|
||||
PartialOrder.<Transitive (TotalOrder.order (numberLessThanOrder n)) pr1 pr2 = orderIsTransitive pr1 pr2
|
||||
TotalOrder.totality (numberLessThanOrder n) a b with TotalOrder.totality ℕTotalOrder (numberLessThan.a a) (numberLessThan.a b)
|
||||
TotalOrder.totality (numberLessThanOrder n) a b | inl (inl x) = inl (inl x)
|
||||
TotalOrder.totality (numberLessThanOrder n) a b | inl (inr x) = inl (inr x)
|
||||
TotalOrder.totality (numberLessThanOrder n) a b | inr x rewrite x = inr (numberLessThanEquality a b x)
|
||||
|
||||
numberLessThanInject : {newMax : ℕ} → (max : ℕ) → (n : numberLessThan max) → (max <N newMax) → (numberLessThan newMax)
|
||||
numberLessThanInject max record { a = n ; a<n = n<max } max<newMax = record { a = n ; a<n = PartialOrder.transitive (TotalOrder.order ℕTotalOrder) n<max max<newMax }
|
||||
numberLessThanInject max record { a = n ; a<n = n<max } max<newMax = record { a = n ; a<n = PartialOrder.<Transitive (TotalOrder.order ℕTotalOrder) n<max max<newMax }
|
||||
|
||||
numberLessThanInjectComp : {max : ℕ} (a b : ℕ) → (i : numberLessThan b) → (pr : b <N a) → (pr2 : a <N max) → numberLessThanInject {max} a (numberLessThanInject {a} b i pr) pr2 ≡ numberLessThanInject {max} b i (PartialOrder.transitive (TotalOrder.order ℕTotalOrder) pr pr2)
|
||||
numberLessThanInjectComp : {max : ℕ} (a b : ℕ) → (i : numberLessThan b) → (pr : b <N a) → (pr2 : a <N max) → numberLessThanInject {max} a (numberLessThanInject {a} b i pr) pr2 ≡ numberLessThanInject {max} b i (PartialOrder.<Transitive (TotalOrder.order ℕTotalOrder) pr pr2)
|
||||
numberLessThanInjectComp {max} a b record { a = i ; a<n = i<max } b<a a<max = numberLessThanEquality _ _ refl
|
||||
|
||||
allNumbersLessThanDescending : (n : ℕ) → Vec (numberLessThan n) n
|
||||
|
Reference in New Issue
Block a user