mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-10 14:18:41 +00:00
Rename order transitivity (#62)
This commit is contained in:
@@ -47,7 +47,7 @@ CauchyCompletion.converges (record { elts = a ; converges = convA } +C record {
|
||||
t {m} {n} <m <n with prA {m} {n} (inequalityShrinkLeft <m) (inequalityShrinkLeft <n)
|
||||
... | am-an<e/2 with prB {m} {n} (inequalityShrinkRight <m) (inequalityShrinkRight <n)
|
||||
... | bm-bn<e/2 with triangleInequality (index a m + inverse (index a n)) (index b m + inverse (index b n))
|
||||
... | inl tri rewrite lemm m a b | lemm n a b = SetoidPartialOrder.<WellDefined pOrder (Equivalence.reflexive eq) e/2Pr (SetoidPartialOrder.transitive pOrder {_} {(abs ((index a m) + (inverse (index a n)))) + (abs ((index b m) + (inverse (index b n))))} (<WellDefined (absWellDefined _ _ (Equivalence.transitive eq (Equivalence.symmetric eq (+Associative {index a m})) (Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq {index a m}) (Equivalence.transitive eq groupIsAbelian (Equivalence.transitive eq (Equivalence.symmetric eq (+Associative {index b m})) (+WellDefined (Equivalence.reflexive eq {index b m}) (Equivalence.symmetric eq (invContravariant additiveGroup)))))) (+Associative {index a m})))) (Equivalence.reflexive eq) tri) (ringAddInequalities am-an<e/2 bm-bn<e/2))
|
||||
... | inl tri rewrite lemm m a b | lemm n a b = SetoidPartialOrder.<WellDefined pOrder (Equivalence.reflexive eq) e/2Pr (SetoidPartialOrder.<Transitive pOrder {_} {(abs ((index a m) + (inverse (index a n)))) + (abs ((index b m) + (inverse (index b n))))} (<WellDefined (absWellDefined _ _ (Equivalence.transitive eq (Equivalence.symmetric eq (+Associative {index a m})) (Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq {index a m}) (Equivalence.transitive eq groupIsAbelian (Equivalence.transitive eq (Equivalence.symmetric eq (+Associative {index b m})) (+WellDefined (Equivalence.reflexive eq {index b m}) (Equivalence.symmetric eq (invContravariant additiveGroup)))))) (+Associative {index a m})))) (Equivalence.reflexive eq) tri) (ringAddInequalities am-an<e/2 bm-bn<e/2))
|
||||
... | inr tri rewrite lemm m a b | lemm n a b = SetoidPartialOrder.<WellDefined pOrder (Equivalence.reflexive eq) e/2Pr (<WellDefined (Equivalence.transitive eq (Equivalence.symmetric eq tri) (absWellDefined _ _ (Equivalence.transitive eq (Equivalence.symmetric eq (+Associative {index a m})) (Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq {index a m}) (Equivalence.transitive eq groupIsAbelian (Equivalence.transitive eq (Equivalence.symmetric eq (+Associative {index b m})) (+WellDefined (Equivalence.reflexive eq {index b m}) (Equivalence.symmetric eq (invContravariant additiveGroup)))))) (+Associative {index a m}))))) (Equivalence.reflexive eq) (ringAddInequalities am-an<e/2 bm-bn<e/2))
|
||||
|
||||
inverseDistributes : {r s : A} → inverse (r + s) ∼ inverse r + inverse s
|
||||
|
Reference in New Issue
Block a user