|
|
|
@@ -62,7 +62,7 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
|
|
|
|
|
r = SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) *Commutative) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) q
|
|
|
|
|
s : (numZ * denomY) < (numY * denomZ)
|
|
|
|
|
s = ringCanCancelPositive order 0<denomX r
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inl 0<denomY) | inl (inl 0<denomX) | inl (inr x) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<denomY x))
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inl 0<denomY) | inl (inl 0<denomX) | inl (inr x) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomY x))
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inl 0<denomY) | inl (inl 0<denomX) | inr x = exFalso (denomY!=0 (symmetric x))
|
|
|
|
|
where
|
|
|
|
|
open Equivalence (Setoid.eq S)
|
|
|
|
@@ -77,12 +77,12 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
|
|
|
|
|
q = SetoidPartialOrder.<WellDefined pOrder reflexive (*WellDefined x=z reflexive) p
|
|
|
|
|
r : ((numY * denomZ) * denomX) < ((numZ * denomY) * denomX)
|
|
|
|
|
r = SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (transitive (symmetric *Associative) *Commutative) q
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inl 0<denomY) | inl (inr denomX<0) | inl (inr x) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<denomY x))
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inl 0<denomY) | inl (inr denomX<0) | inl (inr x) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomY x))
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inl 0<denomY) | inl (inr denomX<0) | inr x = exFalso (denomY!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inl 0<denomY) | inr 0=denomX = exFalso (denomX!=0 (Equivalence.symmetric (Setoid.eq S) 0=denomX))
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inr denomY<0) with totality (Ring.0R R) denomX
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inr denomY<0) | inl (inl 0<denomX) with totality (Ring.0R R) denomY
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inr denomY<0) | inl (inl 0<denomX) | inl (inl 0<denomY) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<denomY denomY<0))
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inr denomY<0) | inl (inl 0<denomX) | inl (inl 0<denomY) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomY denomY<0))
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inr denomY<0) | inl (inl 0<denomX) | inl (inr _) = ringCanCancelPositive order 0<denomX r
|
|
|
|
|
where
|
|
|
|
|
open Ring R
|
|
|
|
@@ -95,7 +95,7 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
|
|
|
|
|
r = SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (transitive (symmetric *Associative) *Commutative) q
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inr denomY<0) | inl (inl 0<denomX) | inr x = exFalso (denomY!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inr denomY<0) | inl (inr denomX<0) with totality (Ring.0R R) denomY
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inr denomY<0) | inl (inr denomX<0) | inl (inl 0<denomY) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<denomY denomY<0))
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inr denomY<0) | inl (inr denomX<0) | inl (inl 0<denomY) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomY denomY<0))
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inl 0<denomZ) | inl (inr denomY<0) | inl (inr denomX<0) | inl (inr _) = ringCanCancelNegative order denomX<0 q
|
|
|
|
|
where
|
|
|
|
|
open Ring R
|
|
|
|
@@ -116,7 +116,7 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
|
|
|
|
|
open Equivalence (Setoid.eq S)
|
|
|
|
|
p : ((numY * denomX) * denomZ) < ((denomY * numX) * denomZ)
|
|
|
|
|
p = ringCanMultiplyByNegative pRing denomZ<0 (SetoidPartialOrder.<WellDefined pOrder *Commutative reflexive x<y)
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inl 0<denomY) | inl (inl 0<denomX) | inl (inr denomY<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<denomY denomY<0))
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inl 0<denomY) | inl (inl 0<denomX) | inl (inr denomY<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomY denomY<0))
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inl 0<denomY) | inl (inl 0<denomX) | inr x = exFalso (denomY!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inl 0<denomY) | inl (inr denomX<0) with totality (Ring.0R R) denomY
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inl 0<denomY) | inl (inr denomX<0) | inl (inl _) = ringCanCancelNegative order denomX<0 (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (transitive (*WellDefined x=z reflexive) (transitive (symmetric *Associative) *Commutative))))) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) p)
|
|
|
|
@@ -125,21 +125,21 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
|
|
|
|
|
open Equivalence (Setoid.eq S)
|
|
|
|
|
p : ((numX * denomY) * denomZ) < ((numY * denomX) * denomZ)
|
|
|
|
|
p = ringCanMultiplyByNegative pRing denomZ<0 x<y
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inl 0<denomY) | inl (inr denomX<0) | inl (inr denomY<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder denomY<0 0<denomY))
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inl 0<denomY) | inl (inr denomX<0) | inl (inr denomY<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder denomY<0 0<denomY))
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inl 0<denomY) | inl (inr denomX<0) | inr 0=denomY = exFalso (denomY!=0 (Equivalence.symmetric (Setoid.eq S) 0=denomY))
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inl 0<denomY) | inr x = exFalso (denomX!=0 (symmetric x))
|
|
|
|
|
where
|
|
|
|
|
open Equivalence (Setoid.eq S)
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inr denomY<0) with totality (Ring.0R R) denomX
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inr denomY<0) | inl (inl 0<denomX) with totality (Ring.0R R) denomY
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inr denomY<0) | inl (inl 0<denomX) | inl (inl 0<denomY) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<denomY denomY<0))
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inr denomY<0) | inl (inl 0<denomX) | inl (inl 0<denomY) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomY denomY<0))
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inr denomY<0) | inl (inl 0<denomX) | inl (inr _) = ringCanCancelPositive order 0<denomX (SetoidPartialOrder.<WellDefined pOrder (transitive (*WellDefined *Commutative reflexive) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive x=z) (transitive *Associative (transitive *Commutative *Associative))))) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (ringCanMultiplyByNegative pRing denomZ<0 x<y))
|
|
|
|
|
where
|
|
|
|
|
open Ring R
|
|
|
|
|
open Equivalence (Setoid.eq S)
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inr denomY<0) | inl (inl 0<denomX) | inr x = exFalso (denomY!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inr denomY<0) | inl (inr denomX<0) with totality (Ring.0R R) denomY
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inr denomY<0) | inl (inr denomX<0) | inl (inl 0<denomY) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<denomY denomY<0))
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inr denomY<0) | inl (inr denomX<0) | inl (inl 0<denomY) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomY denomY<0))
|
|
|
|
|
fieldOfFractionsOrderWellDefinedLeft {numX ,, (denomX , denomX!=0)} {numY ,, (denomY , denomY!=0)} {numZ ,, (denomZ , denomZ!=0)} x<y x=z | inl (inr denomZ<0) | inl (inr denomY<0) | inl (inr denomX<0) | inl (inr _) = ringCanCancelNegative order denomX<0 (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (transitive (*WellDefined *Commutative reflexive) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive x=z) (transitive (*WellDefined reflexive *Commutative) (transitive *Associative (*WellDefined *Commutative reflexive)))))) (ringCanMultiplyByNegative pRing denomZ<0 x<y))
|
|
|
|
|
where
|
|
|
|
|
open Ring R
|
|
|
|
@@ -213,18 +213,18 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
|
|
|
|
|
SetoidPartialOrder.irreflexive (fieldOfFractionsOrder) {aNum ,, (aDenom , aDenom!=0)} pr with totality (Ring.0R R) aDenom
|
|
|
|
|
SetoidPartialOrder.irreflexive (fieldOfFractionsOrder) {aNum ,, (aDenom , aDenom!=0)} pr | inl (inl 0<aDenom) with totality (Ring.0R R) aDenom
|
|
|
|
|
SetoidPartialOrder.irreflexive (fieldOfFractionsOrder) {aNum ,, (aDenom , aDenom!=0)} pr | inl (inl 0<aDenom) | inl (inl _) = SetoidPartialOrder.irreflexive pOrder pr
|
|
|
|
|
SetoidPartialOrder.irreflexive (fieldOfFractionsOrder) {aNum ,, (aDenom , aDenom!=0)} pr | inl (inl 0<aDenom) | inl (inr aDenom<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<aDenom aDenom<0))
|
|
|
|
|
SetoidPartialOrder.irreflexive (fieldOfFractionsOrder) {aNum ,, (aDenom , aDenom!=0)} pr | inl (inl 0<aDenom) | inl (inr aDenom<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<aDenom aDenom<0))
|
|
|
|
|
SetoidPartialOrder.irreflexive (fieldOfFractionsOrder) {aNum ,, (aDenom , aDenom!=0)} pr | inl (inl 0<aDenom) | inr x = exFalso (aDenom!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.irreflexive (fieldOfFractionsOrder) {aNum ,, (aDenom , aDenom!=0)} pr | inl (inr aDenom<0) with totality (Ring.0R R) aDenom
|
|
|
|
|
SetoidPartialOrder.irreflexive (fieldOfFractionsOrder) {aNum ,, (aDenom , aDenom!=0)} pr | inl (inr aDenom<0) | inl (inl 0<aDenom) = SetoidPartialOrder.irreflexive pOrder pr
|
|
|
|
|
SetoidPartialOrder.irreflexive (fieldOfFractionsOrder) {aNum ,, (aDenom , aDenom!=0)} pr | inl (inr aDenom<0) | inl (inr _) = SetoidPartialOrder.irreflexive pOrder pr
|
|
|
|
|
SetoidPartialOrder.irreflexive (fieldOfFractionsOrder) {aNum ,, (aDenom , aDenom!=0)} pr | inl (inr aDenom<0) | inr x = exFalso (aDenom!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.irreflexive (fieldOfFractionsOrder) {aNum ,, (aDenom , aDenom!=0)} pr | inr x = exFalso (aDenom!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c with totality (Ring.0R R) denomA
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) with totality (Ring.0R R) denomC
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) with totality (Ring.0R R) denomB
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inl (inl x) with totality (Ring.0R R) denomC
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inl (inl 0<denomB) | inl (inl _) = ringCanCancelPositive order 0<denomB p
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c with totality (Ring.0R R) denomA
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) with totality (Ring.0R R) denomC
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) with totality (Ring.0R R) denomB
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inl (inl x) with totality (Ring.0R R) denomC
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inl (inl 0<denomB) | inl (inl _) = ringCanCancelPositive order 0<denomB p
|
|
|
|
|
where
|
|
|
|
|
open Setoid S
|
|
|
|
|
open Ring R
|
|
|
|
@@ -232,32 +232,32 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
|
|
|
|
|
inter : ((numA * denomB) * denomC) < ((numB * denomA) * denomC)
|
|
|
|
|
inter = ringCanMultiplyByPositive pRing 0<denomC a<b
|
|
|
|
|
p : ((numA * denomC) * denomB) < ((numC * denomA) * denomB)
|
|
|
|
|
p = SetoidPartialOrder.transitive pOrder (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) reflexive inter) (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (ringCanMultiplyByPositive pRing 0<denomA b<c))
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inl (inl 0<denomB) | inl (inr denomC<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<denomC denomC<0))
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inl (inl 0<denomB) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inl (inr denomB<0) with totality (Ring.0R R) denomC
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inl (inr denomB<0) | inl (inl _) = ringCanCancelNegative order denomB<0 (SetoidPartialOrder.transitive pOrder (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) reflexive (ringCanMultiplyByPositive pRing 0<denomA b<c)) (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (ringCanMultiplyByPositive pRing 0<denomC a<b)))
|
|
|
|
|
p = SetoidPartialOrder.<Transitive pOrder (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) reflexive inter) (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (ringCanMultiplyByPositive pRing 0<denomA b<c))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inl (inl 0<denomB) | inl (inr denomC<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomC denomC<0))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inl (inl 0<denomB) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inl (inr denomB<0) with totality (Ring.0R R) denomC
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inl (inr denomB<0) | inl (inl _) = ringCanCancelNegative order denomB<0 (SetoidPartialOrder.<Transitive pOrder (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) reflexive (ringCanMultiplyByPositive pRing 0<denomA b<c)) (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (ringCanMultiplyByPositive pRing 0<denomC a<b)))
|
|
|
|
|
where
|
|
|
|
|
open Setoid S
|
|
|
|
|
open Ring R
|
|
|
|
|
open Equivalence (Setoid.eq S)
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inl (inr denomB<0) | inl (inr denomC<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<denomC denomC<0))
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inl (inr denomB<0) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inr denomC<0) with totality (Ring.0R R) denomB
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inr denomC<0) | inl (inl 0<denomB) with totality (Ring.0R R) denomC
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inr denomC<0) | inl (inl 0<denomB) | inl (inl 0<denomC) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<denomC denomC<0))
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inr denomC<0) | inl (inl 0<denomB) | inl (inr _) = ringCanCancelPositive order 0<denomB (SetoidPartialOrder.transitive pOrder have (SetoidPartialOrder.<WellDefined pOrder (swapLemma R) (swapLemma R) (ringCanMultiplyByNegative pRing denomC<0 a<b)))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inl (inr denomB<0) | inl (inr denomC<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomC denomC<0))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inl (inr denomB<0) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inl 0<denomC) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inr denomC<0) with totality (Ring.0R R) denomB
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inr denomC<0) | inl (inl 0<denomB) with totality (Ring.0R R) denomC
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inr denomC<0) | inl (inl 0<denomB) | inl (inl 0<denomC) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomC denomC<0))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inr denomC<0) | inl (inl 0<denomB) | inl (inr _) = ringCanCancelPositive order 0<denomB (SetoidPartialOrder.<Transitive pOrder have (SetoidPartialOrder.<WellDefined pOrder (swapLemma R) (swapLemma R) (ringCanMultiplyByNegative pRing denomC<0 a<b)))
|
|
|
|
|
where
|
|
|
|
|
open Setoid S
|
|
|
|
|
open Ring R
|
|
|
|
|
open Equivalence (Setoid.eq S)
|
|
|
|
|
have : ((numC * denomA) * denomB) < ((numB * denomC) * denomA)
|
|
|
|
|
have = SetoidPartialOrder.<WellDefined pOrder (swapLemma R) reflexive (ringCanMultiplyByPositive pRing 0<denomA b<c)
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inr denomC<0) | inl (inl 0<denomB) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inr denomC<0) | inl (inr denomB<0) with totality (Ring.0R R) denomC
|
|
|
|
|
... | (inl (inl 0<denomC)) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<denomC denomC<0))
|
|
|
|
|
... | (inl (inr _)) = ringCanCancelNegative order denomB<0 (SetoidPartialOrder.transitive pOrder have (SetoidPartialOrder.<WellDefined pOrder (swapLemma R) (swapLemma R) (ringCanMultiplyByPositive pRing 0<denomA b<c)))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inr denomC<0) | inl (inl 0<denomB) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inr denomC<0) | inl (inr denomB<0) with totality (Ring.0R R) denomC
|
|
|
|
|
... | (inl (inl 0<denomC)) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomC denomC<0))
|
|
|
|
|
... | (inl (inr _)) = ringCanCancelNegative order denomB<0 (SetoidPartialOrder.<Transitive pOrder have (SetoidPartialOrder.<WellDefined pOrder (swapLemma R) (swapLemma R) (ringCanMultiplyByPositive pRing 0<denomA b<c)))
|
|
|
|
|
where
|
|
|
|
|
open Setoid S
|
|
|
|
|
open Ring R
|
|
|
|
@@ -265,55 +265,55 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
|
|
|
|
|
have : ((numA * denomC) * denomB) < ((numB * denomA) * denomC)
|
|
|
|
|
have = SetoidPartialOrder.<WellDefined pOrder (swapLemma R) reflexive (ringCanMultiplyByNegative pRing denomC<0 a<b)
|
|
|
|
|
... | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inr denomC<0) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) with totality (Ring.0R R) denomC
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) with totality (Ring.0R R) denomB
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inl (inl 0<denomB) with totality (Ring.0R R) denomC
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inl (inl 0<denomB) | inl (inl _) = ringCanCancelPositive order 0<denomB (SetoidPartialOrder.transitive pOrder (SetoidPartialOrder.<WellDefined pOrder (swapLemma R) (swapLemma R) (ringCanMultiplyByNegative pRing denomA<0 b<c)) have)
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inl (inr denomC<0) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inl 0<denomA) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) with totality (Ring.0R R) denomC
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) with totality (Ring.0R R) denomB
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inl (inl 0<denomB) with totality (Ring.0R R) denomC
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inl (inl 0<denomB) | inl (inl _) = ringCanCancelPositive order 0<denomB (SetoidPartialOrder.<Transitive pOrder (SetoidPartialOrder.<WellDefined pOrder (swapLemma R) (swapLemma R) (ringCanMultiplyByNegative pRing denomA<0 b<c)) have)
|
|
|
|
|
where
|
|
|
|
|
open Setoid S
|
|
|
|
|
open Ring R
|
|
|
|
|
open Equivalence (Setoid.eq S)
|
|
|
|
|
have : ((numB * denomA) * denomC) < ((numA * denomC) * denomB)
|
|
|
|
|
have = SetoidPartialOrder.<WellDefined pOrder reflexive (swapLemma R) (ringCanMultiplyByPositive pRing 0<denomC a<b)
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inl (inl 0<denomB) | inl (inr denomC<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<denomC denomC<0))
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inl (inl 0<denomB) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inl (inr denomB<0) with totality (Ring.0R R) denomC
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inl (inr denomB<0) | inl (inl _) = ringCanCancelNegative order denomB<0 (SetoidPartialOrder.transitive pOrder have (SetoidPartialOrder.<WellDefined pOrder (swapLemma R) (swapLemma R) (ringCanMultiplyByNegative pRing denomA<0 b<c)))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inl (inl 0<denomB) | inl (inr denomC<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomC denomC<0))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inl (inl 0<denomB) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inl (inr denomB<0) with totality (Ring.0R R) denomC
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inl (inr denomB<0) | inl (inl _) = ringCanCancelNegative order denomB<0 (SetoidPartialOrder.<Transitive pOrder have (SetoidPartialOrder.<WellDefined pOrder (swapLemma R) (swapLemma R) (ringCanMultiplyByNegative pRing denomA<0 b<c)))
|
|
|
|
|
where
|
|
|
|
|
open Setoid S
|
|
|
|
|
open Ring R
|
|
|
|
|
open Equivalence (Setoid.eq S)
|
|
|
|
|
have : ((numA * denomC) * denomB) < ((numB * denomA) * denomC)
|
|
|
|
|
have = SetoidPartialOrder.<WellDefined pOrder (swapLemma R) reflexive (ringCanMultiplyByPositive pRing 0<denomC a<b)
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inl (inr denomB<0) | inl (inr denomC<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<denomC denomC<0))
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inl (inr denomB<0) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) with totality (Ring.0R R) denomB
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inl (inl 0<denomB) with totality (Ring.0R R) denomC
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inl (inl 0<denomB) | inl (inl 0<denomC) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<denomC denomC<0))
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inl (inl 0<denomB) | inl (inr _) = ringCanCancelPositive order 0<denomB (SetoidPartialOrder.transitive pOrder have (SetoidPartialOrder.<WellDefined pOrder (swapLemma R) (swapLemma R) (ringCanMultiplyByNegative pRing denomA<0 b<c)))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inl (inr denomB<0) | inl (inr denomC<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomC denomC<0))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inl (inr denomB<0) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inl 0<denomC) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) with totality (Ring.0R R) denomB
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inl (inl 0<denomB) with totality (Ring.0R R) denomC
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inl (inl 0<denomB) | inl (inl 0<denomC) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomC denomC<0))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inl (inl 0<denomB) | inl (inr _) = ringCanCancelPositive order 0<denomB (SetoidPartialOrder.<Transitive pOrder have (SetoidPartialOrder.<WellDefined pOrder (swapLemma R) (swapLemma R) (ringCanMultiplyByNegative pRing denomA<0 b<c)))
|
|
|
|
|
where
|
|
|
|
|
open Setoid S
|
|
|
|
|
open Ring R
|
|
|
|
|
open Equivalence (Setoid.eq S)
|
|
|
|
|
have : ((numA * denomC) * denomB) < ((numB * denomA) * denomC)
|
|
|
|
|
have = SetoidPartialOrder.<WellDefined pOrder (swapLemma R) reflexive (ringCanMultiplyByNegative pRing denomC<0 a<b)
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inl (inl 0<denomB) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inl (inr denomB<0) with totality (Ring.0R R) denomC
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inl (inr denomB<0) | inl (inl 0<denomC) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<denomC denomC<0))
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inl (inr denomB<0) | inl (inr _) = ringCanCancelNegative order denomB<0 (SetoidPartialOrder.transitive pOrder (SetoidPartialOrder.<WellDefined pOrder (swapLemma R) (swapLemma R) (ringCanMultiplyByNegative pRing denomA<0 b<c)) have)
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inl (inl 0<denomB) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inl (inr denomB<0) with totality (Ring.0R R) denomC
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inl (inr denomB<0) | inl (inl 0<denomC) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomC denomC<0))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inl (inr denomB<0) | inl (inr _) = ringCanCancelNegative order denomB<0 (SetoidPartialOrder.<Transitive pOrder (SetoidPartialOrder.<WellDefined pOrder (swapLemma R) (swapLemma R) (ringCanMultiplyByNegative pRing denomA<0 b<c)) have)
|
|
|
|
|
where
|
|
|
|
|
open Setoid S
|
|
|
|
|
open Ring R
|
|
|
|
|
open Equivalence (Setoid.eq S)
|
|
|
|
|
have : ((numB * denomA) * denomC) < ((numA * denomC) * denomB)
|
|
|
|
|
have = SetoidPartialOrder.<WellDefined pOrder reflexive (swapLemma R) (ringCanMultiplyByNegative pRing denomC<0 a<b)
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inl (inr denomB<0) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inr x = exFalso (denomA!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inl (inr denomB<0) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inl (inr denomC<0) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inl (inr denomA<0) | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidPartialOrder.<Transitive (fieldOfFractionsOrder) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} {numC ,, (denomC , denomC!=0)} a<b b<c | inr x = exFalso (denomA!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
|
|
|
|
|
fieldOfFractionsTotalOrder : SetoidTotalOrder fieldOfFractionsOrder
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) with totality (Ring.0R R) denomA
|
|
|
|
@@ -323,26 +323,26 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inl 0<denomB) | inl (inl _) | inl (inl x) = inl (inl x)
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inl 0<denomB) | inl (inl _) | inl (inr x) = inl (inr x)
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inl 0<denomB) | inl (inl _) | inr x = inr (Equivalence.transitive (Setoid.eq S) x (Ring.*Commutative R))
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inl 0<denomB) | inl (inr denomA<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<denomA denomA<0))
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inl 0<denomB) | inl (inr denomA<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomA denomA<0))
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inl 0<denomB) | inr x = exFalso (denomA!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inr denomB<0) with totality (Ring.0R R) denomA
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inr denomB<0) | inl (inl _) with totality (numB * denomA) (numA * denomB)
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inr denomB<0) | inl (inl _) | inl (inl x) = inl (inl x)
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inr denomB<0) | inl (inl _) | inl (inr x) = inl (inr x)
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inr denomB<0) | inl (inl _) | inr x = inr (Equivalence.symmetric (Setoid.eq S) (Equivalence.transitive (Setoid.eq S) (Ring.*Commutative R) x))
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inr denomB<0) | inl (inr denomA<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<denomA denomA<0))
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inr denomB<0) | inl (inr denomA<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomA denomA<0))
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inl (inr denomB<0) | inr x = exFalso (denomA!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inl 0<denomA) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) with totality (Ring.0R R) denomB
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inl 0<denomB) with totality (Ring.0R R) denomA
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inl 0<denomB) | inl (inl 0<denomA) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<denomA denomA<0))
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inl 0<denomB) | inl (inl 0<denomA) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomA denomA<0))
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inl 0<denomB) | inl (inr _) with totality (numB * denomA) (numA * denomB)
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inl 0<denomB) | inl (inr _) | inl (inl x) = inl (inl x)
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inl 0<denomB) | inl (inr _) | inl (inr x) = inl (inr x)
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inl 0<denomB) | inl (inr _) | inr x = inr (Equivalence.transitive (Setoid.eq S) (Equivalence.symmetric (Setoid.eq S) x) (Ring.*Commutative R))
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inl 0<denomB) | inr x = exFalso (denomA!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inr denomB<0) with totality (Ring.0R R) denomA
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inr denomB<0) | inl (inl 0<denomA) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<denomA denomA<0))
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inr denomB<0) | inl (inl 0<denomA) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<denomA denomA<0))
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inr denomB<0) | inl (inr _) with totality (numA * denomB) (numB * denomA)
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inr denomB<0) | inl (inr _) | inl (inl x) = inl (inl x)
|
|
|
|
|
SetoidTotalOrder.totality (fieldOfFractionsTotalOrder) (numA ,, (denomA , denomA!=0)) (numB ,, (denomB , denomB!=0)) | inl (inr denomA<0) | inl (inr denomB<0) | inl (inr _) | inl (inr x) = inl (inr x)
|
|
|
|
@@ -354,7 +354,7 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
|
|
|
|
|
ineqLemma : {x y : A} → (Ring.0R R) < (x * y) → (Ring.0R R) < x → (Ring.0R R) < y
|
|
|
|
|
ineqLemma {x} {y} 0<xy 0<x with totality (Ring.0R R) y
|
|
|
|
|
ineqLemma {x} {y} 0<xy 0<x | inl (inl 0<y) = 0<y
|
|
|
|
|
ineqLemma {x} {y} 0<xy 0<x | inl (inr y<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<xy (SetoidPartialOrder.<WellDefined pOrder reflexive (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing y<0 0<x))))
|
|
|
|
|
ineqLemma {x} {y} 0<xy 0<x | inl (inr y<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<xy (SetoidPartialOrder.<WellDefined pOrder reflexive (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing y<0 0<x))))
|
|
|
|
|
where
|
|
|
|
|
open Setoid S
|
|
|
|
|
open Ring R
|
|
|
|
@@ -367,7 +367,7 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
|
|
|
|
|
|
|
|
|
|
ineqLemma' : {x y : A} → (Ring.0R R) < (x * y) → x < (Ring.0R R) → y < (Ring.0R R)
|
|
|
|
|
ineqLemma' {x} {y} 0<xy x<0 with totality (Ring.0R R) y
|
|
|
|
|
... | inl (inl 0<y) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<xy (SetoidPartialOrder.<WellDefined pOrder *Commutative (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing x<0 0<y))))
|
|
|
|
|
... | inl (inl 0<y) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<xy (SetoidPartialOrder.<WellDefined pOrder *Commutative (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing x<0 0<y))))
|
|
|
|
|
where
|
|
|
|
|
open Setoid S
|
|
|
|
|
open Ring R
|
|
|
|
@@ -381,7 +381,7 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
|
|
|
|
|
|
|
|
|
|
ineqLemma'' : {x y : A} → (x * y) < (Ring.0R R) → (Ring.0R R) < x → y < (Ring.0R R)
|
|
|
|
|
ineqLemma'' {x} {y} xy<0 0<x with totality (Ring.0R R) y
|
|
|
|
|
... | inl (inl 0<y) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder xy<0 (orderRespectsMultiplication 0<x 0<y)))
|
|
|
|
|
... | inl (inl 0<y) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder xy<0 (orderRespectsMultiplication 0<x 0<y)))
|
|
|
|
|
where
|
|
|
|
|
open Setoid S
|
|
|
|
|
open Ring R
|
|
|
|
@@ -396,7 +396,7 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
|
|
|
|
|
ineqLemma''' : {x y : A} → (x * y) < (Ring.0R R) → x < (Ring.0R R) → (Ring.0R R) < y
|
|
|
|
|
ineqLemma''' {x} {y} xy<0 x<0 with totality (Ring.0R R) y
|
|
|
|
|
... | inl (inl 0<y) = 0<y
|
|
|
|
|
... | inl (inr y<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder xy<0 (SetoidPartialOrder.<WellDefined pOrder (transitive *Commutative (Ring.timesZero R)) reflexive (ringCanMultiplyByNegative pRing y<0 x<0))))
|
|
|
|
|
... | inl (inr y<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder xy<0 (SetoidPartialOrder.<WellDefined pOrder (transitive *Commutative (Ring.timesZero R)) reflexive (ringCanMultiplyByNegative pRing y<0 x<0))))
|
|
|
|
|
where
|
|
|
|
|
open Setoid S
|
|
|
|
|
open Ring R
|
|
|
|
@@ -420,7 +420,7 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
|
|
|
|
|
0<dC : 0R < denomC
|
|
|
|
|
0<dC with totality 0R denomC
|
|
|
|
|
0<dC | inl (inl x) = x
|
|
|
|
|
0<dC | inl (inr dC<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<dBdC (SetoidPartialOrder.<WellDefined pOrder reflexive (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing dC<0 0<dB))))
|
|
|
|
|
0<dC | inl (inr dC<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dBdC (SetoidPartialOrder.<WellDefined pOrder reflexive (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing dC<0 0<dB))))
|
|
|
|
|
0<dC | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
p : ((numA * denomC) * denomB) < ((numB * denomC) * denomA)
|
|
|
|
|
p = SetoidPartialOrder.<WellDefined pOrder (swapLemma R) (swapLemma R) (ringCanMultiplyByPositive pRing 0<dC a<b)
|
|
|
|
@@ -433,11 +433,11 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
|
|
|
|
|
open Ring R
|
|
|
|
|
dC<0 : denomC < 0R
|
|
|
|
|
dC<0 with totality 0R denomC
|
|
|
|
|
... | inl (inl x) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<dBdC (SetoidPartialOrder.<WellDefined pOrder reflexive (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByPositive pRing x dB<0))))
|
|
|
|
|
... | inl (inl x) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dBdC (SetoidPartialOrder.<WellDefined pOrder reflexive (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByPositive pRing x dB<0))))
|
|
|
|
|
... | inl (inr x) = x
|
|
|
|
|
... | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
bad : False
|
|
|
|
|
bad = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<dAdC (SetoidPartialOrder.<WellDefined pOrder reflexive (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing dC<0 0<dA)))
|
|
|
|
|
bad = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dAdC (SetoidPartialOrder.<WellDefined pOrder reflexive (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing dC<0 0<dA)))
|
|
|
|
|
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inl 0<dBdC) | inl (inl 0<dA) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inl 0<dBdC) | inl (inr dA<0) with totality (Ring.0R R) denomB
|
|
|
|
|
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inl 0<dBdC) | inl (inr dA<0) | inl (inl 0<dB) = exFalso bad
|
|
|
|
@@ -448,15 +448,15 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
|
|
|
|
|
0<dC : 0R < denomC
|
|
|
|
|
0<dC with totality 0R denomC
|
|
|
|
|
0<dC | inl (inl x) = x
|
|
|
|
|
0<dC | inl (inr dC<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<dBdC (SetoidPartialOrder.<WellDefined pOrder reflexive (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing dC<0 0<dB))))
|
|
|
|
|
0<dC | inl (inr dC<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dBdC (SetoidPartialOrder.<WellDefined pOrder reflexive (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing dC<0 0<dB))))
|
|
|
|
|
0<dC | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
dC<0 : denomC < 0R
|
|
|
|
|
dC<0 with totality 0R denomC
|
|
|
|
|
dC<0 | inl (inl 0<dC) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<dAdC (SetoidPartialOrder.<WellDefined pOrder *Commutative (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing dA<0 0<dC))))
|
|
|
|
|
dC<0 | inl (inl 0<dC) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dAdC (SetoidPartialOrder.<WellDefined pOrder *Commutative (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing dA<0 0<dC))))
|
|
|
|
|
dC<0 | inl (inr x) = x
|
|
|
|
|
dC<0 | inr x = exFalso (denomC!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
bad : False
|
|
|
|
|
bad = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<dC dC<0)
|
|
|
|
|
bad = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dC dC<0)
|
|
|
|
|
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inl 0<dBdC) | inl (inr dA<0) | inl (inr dB<0) = SetoidPartialOrder.<WellDefined pOrder (symmetric *Associative) (symmetric *Associative) (ringCanMultiplyByNegative pRing dC<0 (SetoidPartialOrder.<WellDefined pOrder (transitive (symmetric *DistributesOver+) *Commutative) (transitive (symmetric *DistributesOver+) *Commutative) have''))
|
|
|
|
|
where
|
|
|
|
|
open Setoid S
|
|
|
|
@@ -484,7 +484,7 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
|
|
|
|
|
dC<0 : denomC < 0R
|
|
|
|
|
dC<0 = ineqLemma'' dBdC<0 0<dB
|
|
|
|
|
bad : False
|
|
|
|
|
bad = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<dC dC<0)
|
|
|
|
|
bad = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dC dC<0)
|
|
|
|
|
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inr dBdC<0) | inl (inl 0<dA) | inl (inr dB<0) = SetoidPartialOrder.<WellDefined pOrder (symmetric *Associative) (symmetric *Associative) (ringCanMultiplyByPositive pRing 0<dC ans)
|
|
|
|
|
where
|
|
|
|
|
open Setoid S
|
|
|
|
@@ -519,7 +519,7 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
|
|
|
|
|
0<dC : 0R < denomC
|
|
|
|
|
0<dC = ineqLemma''' dBdC<0 dB<0
|
|
|
|
|
bad : False
|
|
|
|
|
bad = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<dC dC<0)
|
|
|
|
|
bad = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dC dC<0)
|
|
|
|
|
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inr dBdC<0) | inl (inr dA<0) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inl (inr dBdC<0) | inr x = exFalso (denomA!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inl 0<dAdC) | inr 0=dBdC with IntegralDomain.intDom I (Equivalence.symmetric (Setoid.eq S) 0=dBdC)
|
|
|
|
@@ -528,7 +528,7 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
|
|
|
|
|
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) with totality (Ring.0R R) (denomB * denomC)
|
|
|
|
|
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inl 0<dBdC) with totality (Ring.0R R) denomA
|
|
|
|
|
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inl 0<dBdC) | inl (inl 0<dA) with totality (Ring.0R R) denomB
|
|
|
|
|
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inl 0<dBdC) | inl (inl 0<dA) | inl (inl 0<dB) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<dC dC<0))
|
|
|
|
|
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inl 0<dBdC) | inl (inl 0<dA) | inl (inl 0<dB) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dC dC<0))
|
|
|
|
|
where
|
|
|
|
|
open Setoid S
|
|
|
|
|
open Equivalence (Setoid.eq S)
|
|
|
|
@@ -557,7 +557,7 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
|
|
|
|
|
0<dC = ineqLemma 0<dBdC 0<dB
|
|
|
|
|
have : (((numB * denomA) * denomC) + ((denomA * numC) * denomB)) < (((numA * denomB) * denomC) + ((denomA * numC) * denomB))
|
|
|
|
|
have = PartiallyOrderedRing.orderRespectsAddition pRing (ringCanMultiplyByPositive pRing 0<dC a<b) _
|
|
|
|
|
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inl 0<dBdC) | inl (inr dA<0) | inl (inr dB<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<dC dC<0))
|
|
|
|
|
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inl 0<dBdC) | inl (inr dA<0) | inl (inr dB<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dC dC<0))
|
|
|
|
|
where
|
|
|
|
|
open Setoid S
|
|
|
|
|
open Equivalence (Setoid.eq S)
|
|
|
|
@@ -579,7 +579,7 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
|
|
|
|
|
dC<0 = ineqLemma'' dAdC<0 0<dA
|
|
|
|
|
have : (((numB * denomA) * denomC) + ((denomB * numC) * denomA)) < (((numA * denomB) * denomC) + ((denomB * numC) * denomA))
|
|
|
|
|
have = PartiallyOrderedRing.orderRespectsAddition pRing (ringCanMultiplyByNegative pRing dC<0 a<b) _
|
|
|
|
|
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inr dBdC<0) | inl (inl 0<dA) | inl (inr dB<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder dC<0 0<dC))
|
|
|
|
|
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inr dBdC<0) | inl (inl 0<dA) | inl (inr dB<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder dC<0 0<dC))
|
|
|
|
|
where
|
|
|
|
|
open Setoid S
|
|
|
|
|
open Equivalence (Setoid.eq S)
|
|
|
|
@@ -590,7 +590,7 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
|
|
|
|
|
0<dC = ineqLemma''' dBdC<0 dB<0
|
|
|
|
|
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inr dBdC<0) | inl (inl 0<dA) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inr dBdC<0) | inl (inr dA<0) with totality (Ring.0R R) denomB
|
|
|
|
|
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inr dBdC<0) | inl (inr dA<0) | inl (inl 0<dB) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<dC dC<0))
|
|
|
|
|
PartiallyOrderedRing.orderRespectsAddition (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} a<b (numC ,, (denomC , denomC!=0)) | inl (inr dAdC<0) | inl (inr dBdC<0) | inl (inr dA<0) | inl (inl 0<dB) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dC dC<0))
|
|
|
|
|
where
|
|
|
|
|
open Setoid S
|
|
|
|
|
open Equivalence (Setoid.eq S)
|
|
|
|
@@ -631,14 +631,14 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
|
|
|
|
|
0<nB = SetoidPartialOrder.<WellDefined pOrder (transitive *Commutative (Ring.timesZero R)) (transitive *Commutative identIsIdent) 0<b
|
|
|
|
|
0<nAnB : 0R < (numA * numB)
|
|
|
|
|
0<nAnB = SetoidPartialOrder.<WellDefined pOrder (transitive *Commutative (Ring.timesZero R)) reflexive (ringCanMultiplyByPositive pRing 0<nB 0<nA)
|
|
|
|
|
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) | inl (inl 0<dB) | inl (inr dA<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<dAdB (SetoidPartialOrder.<WellDefined pOrder *Commutative (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing dA<0 0<dB))))
|
|
|
|
|
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) | inl (inl 0<dB) | inl (inr dA<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dAdB (SetoidPartialOrder.<WellDefined pOrder *Commutative (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing dA<0 0<dB))))
|
|
|
|
|
where
|
|
|
|
|
open Setoid S
|
|
|
|
|
open Equivalence (Setoid.eq S)
|
|
|
|
|
open Ring R
|
|
|
|
|
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) | inl (inl 0<dB) | inr x = exFalso (denomA!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) | inl (inr dB<0) with totality (Ring.0R R) denomA
|
|
|
|
|
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) | inl (inr dB<0) | inl (inl 0<dA) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 0<dAdB (SetoidPartialOrder.<WellDefined pOrder reflexive (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing dB<0 0<dA))))
|
|
|
|
|
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inl 0<dAdB) | inl (inr dB<0) | inl (inl 0<dA) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 0<dAdB (SetoidPartialOrder.<WellDefined pOrder reflexive (transitive *Commutative (Ring.timesZero R)) (ringCanMultiplyByNegative pRing dB<0 0<dA))))
|
|
|
|
|
where
|
|
|
|
|
open Setoid S
|
|
|
|
|
open Equivalence (Setoid.eq S)
|
|
|
|
@@ -665,7 +665,7 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
|
|
|
|
|
open Ring R
|
|
|
|
|
f : False
|
|
|
|
|
f with PartiallyOrderedRing.orderRespectsMultiplication pRing 0<denomA 0<denomB
|
|
|
|
|
... | bl = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder bl dAdB<0)
|
|
|
|
|
... | bl = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder bl dAdB<0)
|
|
|
|
|
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inr dAdB<0) | inl (inl 0<denomB) | inl (inr denomA<0) = SetoidPartialOrder.<WellDefined pOrder (symmetric (transitive *Commutative identIsIdent)) (symmetric (transitive *Commutative (Ring.timesZero R))) ans
|
|
|
|
|
where
|
|
|
|
|
open Setoid S
|
|
|
|
@@ -698,13 +698,13 @@ module Fields.FieldOfFractionsOrder {a b c : _} {A : Set a} {S : Setoid {a} {b}
|
|
|
|
|
h : 0R < (denomA * denomB)
|
|
|
|
|
h = SetoidPartialOrder.<WellDefined pOrder (transitive *Commutative (Ring.timesZero R)) reflexive (ringCanMultiplyByNegative pRing denomB<0 denomA<0)
|
|
|
|
|
f : False
|
|
|
|
|
f = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder dAdB<0 h)
|
|
|
|
|
f = SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder dAdB<0 h)
|
|
|
|
|
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inr dAdB<0) | inl (inr denomB<0) | inr x = exFalso (denomA!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inl (inr dAdB<0) | inr x = exFalso (denomB!=0 (Equivalence.symmetric (Setoid.eq S) x))
|
|
|
|
|
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inl 0<1) | inr 0=dAdB with IntegralDomain.intDom I (Equivalence.symmetric (Setoid.eq S) 0=dAdB)
|
|
|
|
|
... | inl x = exFalso (denomA!=0 x)
|
|
|
|
|
... | inr x = exFalso (denomB!=0 x)
|
|
|
|
|
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inr 1<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.transitive pOrder 1<0 (SetoidPartialOrder.<WellDefined pOrder (transitive *Commutative (Ring.timesZero R)) identIsIdent (ringCanMultiplyByNegative pRing 1<0 1<0))))
|
|
|
|
|
PartiallyOrderedRing.orderRespectsMultiplication (fieldOfFractionsPOrderedRing) {numA ,, (denomA , denomA!=0)} {numB ,, (denomB , denomB!=0)} 0<a 0<b | inl (inr 1<0) = exFalso (SetoidPartialOrder.irreflexive pOrder (SetoidPartialOrder.<Transitive pOrder 1<0 (SetoidPartialOrder.<WellDefined pOrder (transitive *Commutative (Ring.timesZero R)) identIsIdent (ringCanMultiplyByNegative pRing 1<0 1<0))))
|
|
|
|
|
where
|
|
|
|
|
open Setoid S
|
|
|
|
|
open Equivalence (Setoid.eq S)
|
|
|
|
|