mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-13 07:38:40 +00:00
Comparison on the reals (#55)
This commit is contained in:
@@ -21,7 +21,7 @@ ringMinusExtracts {x = x} {y} = transferToRight' additiveGroup (transitive (symm
|
||||
where
|
||||
open Equivalence eq
|
||||
|
||||
ringMinusExtracts' : {x y : A} → Setoid._∼_ S ((Group.inverse (Ring.additiveGroup R) x) * y) (Group.inverse (Ring.additiveGroup R) (x * y))
|
||||
ringMinusExtracts' : {x y : A} → ((inverse x) * y) ∼ inverse (x * y)
|
||||
ringMinusExtracts' {x = x} {y} = transitive *Commutative (transitive ringMinusExtracts (inverseWellDefined additiveGroup *Commutative))
|
||||
where
|
||||
open Equivalence eq
|
||||
@@ -40,3 +40,6 @@ groupLemmaMove0G {S = S} G {x} pr = transitive (symmetric (invInv G)) (transitiv
|
||||
|
||||
groupLemmaMove0G' : {a b : _} → {A : Set a} → {_·_ : A → A → A} → {S : Setoid {a} {b} A} → (G : Group S _·_) → {x : A} → Setoid._∼_ S x (Group.0G G) → (Setoid._∼_ S (Group.0G G) (Group.inverse G x))
|
||||
groupLemmaMove0G' {S = S} G {x} pr = transferToRight' G (Equivalence.transitive (Setoid.eq S) (Group.identLeft G) pr)
|
||||
|
||||
oneZeroImpliesAllZero : 0R ∼ 1R → {x : A} → x ∼ 0R
|
||||
oneZeroImpliesAllZero 0=1 = Equivalence.transitive eq (Equivalence.symmetric eq identIsIdent) (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq 0=1) (Equivalence.reflexive eq)) (Equivalence.transitive eq *Commutative timesZero))
|
||||
|
Reference in New Issue
Block a user