Comparison on the reals (#55)

This commit is contained in:
Patrick Stevens
2019-10-26 10:36:24 +01:00
committed by GitHub
parent 4e56b68024
commit 0d68919127
18 changed files with 1343 additions and 691 deletions

View File

@@ -0,0 +1,133 @@
{-# OPTIONS --safe --warning=error --without-K --guardedness #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Setoids.Setoids
open import Rings.Definition
open import Rings.Lemmas
open import Rings.Order
open import Groups.Definition
open import Groups.Groups
open import Fields.Fields
open import Sets.EquivalenceRelations
open import Sequences
open import Setoids.Orders
open import Functions
open import LogicalFormulae
open import Numbers.Naturals.Naturals
open import Semirings.Definition
module Fields.CauchyCompletion.Setoid {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A A A} {_*_ : A A A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {tOrder : SetoidTotalOrder {_<_ = _<_} pOrder} {R : Ring S _+_ _*_} (order : OrderedRing R tOrder) (F : Field R) (charNot2 : Setoid.__ S ((Ring.1R R) + (Ring.1R R)) (Ring.0R R) False) where
open Setoid S
open SetoidTotalOrder tOrder
open SetoidPartialOrder pOrder
open Equivalence eq
open OrderedRing order
open Ring R
open Group additiveGroup
open Field F
open import Fields.Lemmas F
open import Fields.CauchyCompletion.Definition order F
open import Fields.CauchyCompletion.Addition order F charNot2
open import Rings.Orders.Lemmas(order)
isZero : CauchyCompletion Set (m o)
isZero record { elts = elts ; converges = converges } = ε 0R < ε Sg (λ N {m : } (N <N m) (abs (index elts m)) < ε)
transitiveLemma : {a b c e/2 : A} abs (a + inverse b) < e/2 abs (b + inverse c) < e/2 (abs (a + inverse c)) < (e/2 + e/2)
transitiveLemma {a} {b} {c} {e/2} a-b<e/2 b-c<e/2 with triangleInequality (a + inverse b) (b + inverse c)
transitiveLemma {a} {b} {c} {e/2} a-b<e/2 b-c<e/2 | inl x = SetoidPartialOrder.transitive pOrder (<WellDefined (absWellDefined _ _ (Equivalence.transitive eq (Equivalence.symmetric eq +Associative) (+WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq +Associative (Equivalence.transitive eq (+WellDefined invLeft (Equivalence.reflexive eq)) identLeft))))) (Equivalence.reflexive eq) x) (ringAddInequalities a-b<e/2 b-c<e/2)
transitiveLemma {a} {b} {c} {e/2} a-b<e/2 b-c<e/2 | inr x = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (absWellDefined _ _ (Equivalence.symmetric eq ((Equivalence.transitive eq (Equivalence.symmetric eq +Associative) (+WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq +Associative (Equivalence.transitive eq (+WellDefined invLeft (Equivalence.reflexive eq)) identLeft))))))) x)) (Equivalence.reflexive eq) (ringAddInequalities a-b<e/2 b-c<e/2)
cauchyCompletionSetoid : Setoid CauchyCompletion
(cauchyCompletionSetoid Setoid. a) b = isZero (a +C (-C b))
Equivalence.reflexive (Setoid.eq cauchyCompletionSetoid) {x} ε 0<e = 0 , t
where
t : {m : } (0 <N m) abs (index (apply _+_ (CauchyCompletion.elts x) (map inverse (CauchyCompletion.elts x))) m) < ε
t {m} 0<m rewrite indexAndApply (CauchyCompletion.elts x) (map inverse (CauchyCompletion.elts x)) _+_ {m} | equalityCommutative (mapAndIndex (CauchyCompletion.elts x) inverse m) = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (absWellDefined _ _ invRight) (identityOfIndiscernablesRight __ (Equivalence.reflexive eq) (absZero order)))) (Equivalence.reflexive eq) 0<e
Equivalence.symmetric (Setoid.eq cauchyCompletionSetoid) {x} {y} x=y ε 0<e with x=y ε 0<e
Equivalence.symmetric (Setoid.eq cauchyCompletionSetoid) {x} {y} x=y ε 0<e | N , pr = N , t
where
t : {m : } N <N m abs (index (apply _+_ (CauchyCompletion.elts y) (map inverse (CauchyCompletion.elts x))) m) < ε
t {m} N<m = <WellDefined (Equivalence.transitive eq (absNegation _) (absWellDefined _ _ (identityOfIndiscernablesRight __ (identityOfIndiscernablesLeft __ (identityOfIndiscernablesLeft __ (Equivalence.transitive eq (inverseDistributes) (Equivalence.transitive eq groupIsAbelian (+WellDefined (Equivalence.transitive eq (inverseWellDefined additiveGroup (identityOfIndiscernablesLeft __ (Equivalence.reflexive eq) (mapAndIndex _ inverse m))) (invTwice additiveGroup (index (CauchyCompletion.elts y) m))) (identityOfIndiscernablesLeft __ (Equivalence.reflexive eq) (equalityCommutative (mapAndIndex (CauchyCompletion.elts x) inverse m)))))) (equalityCommutative (mapAndApply (CauchyCompletion.elts x) (map inverse (CauchyCompletion.elts y)) _+_ inverse m))) (equalityCommutative (mapAndIndex _ inverse m))) (equalityCommutative (indexAndApply (CauchyCompletion.elts y) (map inverse (CauchyCompletion.elts x)) _+_ {m}))))) (Equivalence.reflexive eq) (pr N<m)
Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {x} {y} {z} x=y y=z ε 0<e with halve charNot2 ε
... | e/2 , prHalf with x=y e/2 (halvePositive e/2 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq prHalf) 0<e))
... | Nx , prX with y=z e/2 (halvePositive e/2 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq prHalf) 0<e))
... | Ny , prY = (Nx +N Ny) , t
where
t : {m : } (Nx +N Ny <N m) abs (index (apply _+_ (CauchyCompletion.elts x) (map inverse (CauchyCompletion.elts z))) m) < ε
t {m} nsPr with prX {m} (le (_<N_.x nsPr +N Ny) (transitivity (applyEquality succ (transitivity (equalityCommutative (Semiring.+Associative Semiring _ Ny Nx)) (applyEquality ( λ i (_<N_.x nsPr) +N i) (Semiring.commutative Semiring Ny Nx)))) (_<N_.proof nsPr)))
... | x-y<e/2 with prY {m} (le (_<N_.x nsPr +N Nx) (transitivity (applyEquality succ (equalityCommutative (Semiring.+Associative Semiring _ Nx Ny))) (_<N_.proof nsPr)))
... | y-z<e/2 rewrite indexAndApply (CauchyCompletion.elts x) (map inverse (CauchyCompletion.elts z)) _+_ {m} | indexAndApply (CauchyCompletion.elts x) (map inverse (CauchyCompletion.elts y)) _+_ {m} | indexAndApply (CauchyCompletion.elts y) (map inverse (CauchyCompletion.elts z)) _+_ {m} | equalityCommutative (mapAndIndex (CauchyCompletion.elts z) inverse m) | equalityCommutative (mapAndIndex (CauchyCompletion.elts y) inverse m) = <WellDefined (Equivalence.reflexive eq) prHalf (transitiveLemma x-y<e/2 y-z<e/2)
injectionPreservesSetoid : (a b : A) (a b) Setoid.__ cauchyCompletionSetoid (injection a) (injection b)
injectionPreservesSetoid a b a=b ε 0<e = 0 , t
where
t : {m : } 0 <N m abs (index (apply _+_ (constSequence a) (map inverse (constSequence b))) m) < ε
t {m} 0<m = <WellDefined (identityOfIndiscernablesLeft __ (absWellDefined 0G _ (identityOfIndiscernablesRight __ (Equivalence.transitive eq (Equivalence.symmetric eq (transferToRight'' additiveGroup a=b)) (+WellDefined (identityOfIndiscernablesLeft __ (Equivalence.reflexive eq) (indexAndConst a m)) (identityOfIndiscernablesRight __ (Equivalence.reflexive eq) (transitivity (applyEquality inverse (equalityCommutative (indexAndConst _ m))) (mapAndIndex _ inverse m))))) (equalityCommutative (indexAndApply (constSequence a) _ _+_ {m})))) (absZero order)) (Equivalence.reflexive eq) 0<e
infinitesimalImplies0 : (a : A) ({ε : A} (0R < ε) a < ε) (a 0R) || (a < 0R)
infinitesimalImplies0 a pr with SetoidTotalOrder.totality tOrder 0R a
infinitesimalImplies0 a pr | inl (inl 0<a) with halve charNot2 a
infinitesimalImplies0 a pr | inl (inl 0<a) | a/2 , prA/2 with pr {a/2} (halvePositive a/2 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq prA/2) 0<a))
... | bl with halvePositive a/2 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq prA/2) 0<a)
... | 0<a/2 = exFalso (irreflexive {a} (<WellDefined identLeft prA/2 (ringAddInequalities 0<a/2 bl)))
infinitesimalImplies0 a pr | inl (inr a<0) = inr a<0
infinitesimalImplies0 a pr | inr 0=a = inl (Equivalence.symmetric eq 0=a)
injectionPreservesSetoid' : (a b : A) Setoid.__ cauchyCompletionSetoid (injection a) (injection b) a b
injectionPreservesSetoid' a b a=b = transferToRight additiveGroup (absZeroImpliesZero ans)
where
infinitesimal : {ε : A} 0G < ε abs (a + inverse b) < ε
infinitesimal {ε} 0<e with a=b ε 0<e
... | N , pr with pr {succ N} (le 0 refl)
... | bl rewrite indexAndApply (constSequence a) (map inverse (constSequence b)) _+_ {N} | indexAndConst a N | equalityCommutative (mapAndIndex (constSequence b) inverse N) | indexAndConst b N = bl
ans : (abs (a + inverse b)) 0G
ans with infinitesimalImplies0 _ infinitesimal
... | inl x = x
... | inr x = exFalso (absNonnegative x)
+CCommutative : {a b : CauchyCompletion} Setoid.__ cauchyCompletionSetoid (a +C b) (b +C a)
+CCommutative {a} {b} ε 0<e = 0 , ans
where
foo : {x y : A} (x + y) + inverse (y + x) 0G
foo = Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) (inverseWellDefined additiveGroup groupIsAbelian)) invRight
ans : {m : } 0 <N m abs (index (apply _+_ (CauchyCompletion.elts (a +C b)) (map inverse (CauchyCompletion.elts (b +C a)))) m) < ε
ans {m} 0<m rewrite indexAndApply (CauchyCompletion.elts (a +C b)) (map inverse (CauchyCompletion.elts (b +C a))) _+_ {m} | indexAndApply (CauchyCompletion.elts a) (CauchyCompletion.elts b) _+_ {m} | equalityCommutative (mapAndIndex (apply _+_ (CauchyCompletion.elts b) (CauchyCompletion.elts a)) inverse m) | indexAndApply (CauchyCompletion.elts b) (CauchyCompletion.elts a) _+_ {m} = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (absWellDefined _ _ foo) (identityOfIndiscernablesRight __ (Equivalence.reflexive eq) (absZero order)) )) (Equivalence.reflexive eq) 0<e
additionWellDefinedLeft : (a b c : CauchyCompletion) Setoid.__ cauchyCompletionSetoid a b Setoid.__ cauchyCompletionSetoid (a +C c) (b +C c)
additionWellDefinedLeft record { elts = a ; converges = aConv } record { elts = b ; converges = bConv } record { elts = c ; converges = cConv } a=b ε 0<e with a=b ε 0<e
... | Na-b , prA-b = Na-b , ans
where
ans : {m : } Na-b <N m abs (index (apply _+_ (apply _+_ a c) (map inverse (apply _+_ b c))) m) < ε
ans {m} mBig with prA-b {m} mBig
... | bl rewrite indexAndApply (apply _+_ a c) (map inverse (apply _+_ b c)) _+_ {m} | indexAndApply a c _+_ {m} | equalityCommutative (mapAndIndex (apply _+_ b c) inverse m) | indexAndApply b c _+_ {m} = <WellDefined (absWellDefined _ _ t) (Equivalence.reflexive eq) bl
where
t : index (apply _+_ a (map inverse b)) m ((index a m + index c m) + inverse (index b m + index c m))
t rewrite indexAndApply a (map inverse b) _+_ {m} | equalityCommutative (mapAndIndex b inverse m) = Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq identLeft) (+WellDefined (Equivalence.symmetric eq invRight) (Equivalence.reflexive eq))) (Equivalence.symmetric eq +Associative)) (+WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq (invContravariant additiveGroup))))) (+Associative {index a m})
additionPreservedLeft : {a b : A} {c : CauchyCompletion} (a b) Setoid.__ cauchyCompletionSetoid (injection a +C c) (injection b +C c)
additionPreservedLeft {a} {b} {c} a=b = additionWellDefinedLeft (injection a) (injection b) c (injectionPreservesSetoid a b a=b)
additionPreservedRight : {a b : A} {c : CauchyCompletion} (a b) Setoid.__ cauchyCompletionSetoid (c +C injection a) (c +C injection b)
additionPreservedRight {a} {b} {c} a=b = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {c +C injection a} {injection a +C c} {c +C injection b} (+CCommutative {c} {injection a}) (Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {injection a +C c} {injection b +C c} {c +C injection b} (additionPreservedLeft {a} {b} {c} a=b) (+CCommutative {injection b} {c}))
additionPreserved : {a b c d : A} (a b) (c d) Setoid.__ cauchyCompletionSetoid (injection a +C injection c) (injection b +C injection d)
additionPreserved {a} {b} {c} {d} a=b c=d = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {injection a +C injection c} {injection a +C injection d} {injection b +C injection d} (additionPreservedRight {c} {d} {injection a} c=d) (additionPreservedLeft {a} {b} {injection d} a=b)
additionWellDefinedRight : (a b c : CauchyCompletion) Setoid.__ cauchyCompletionSetoid b c Setoid.__ cauchyCompletionSetoid (a +C b) (a +C c)
additionWellDefinedRight a b c b=c = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {a +C b} {b +C a} {a +C c} (+CCommutative {a} {b}) (Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {b +C a} {c +C a} {a +C c} (additionWellDefinedLeft b c a b=c) (+CCommutative {c} {a}))
additionWellDefined : {a b c d : CauchyCompletion} Setoid.__ cauchyCompletionSetoid a b Setoid.__ cauchyCompletionSetoid c d Setoid.__ cauchyCompletionSetoid (a +C c) (b +C d)
additionWellDefined {a} {b} {c} {d} a=b c=d = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {a +C c} {a +C d} {b +C d} (additionWellDefinedRight a c d c=d) (additionWellDefinedLeft a b d a=b)
additionHom : (x y : A) Setoid.__ cauchyCompletionSetoid (injection (x + y)) (injection x +C injection y)
additionHom x y ε 0<e = 0 , ans
where
ans : {m : } 0 <N m abs (index (apply _+_ (CauchyCompletion.elts (injection (x + y))) (map inverse (CauchyCompletion.elts (injection x +C injection y)))) m) < ε
ans {m} 0<m rewrite indexAndApply (CauchyCompletion.elts (injection (x + y))) (map inverse (CauchyCompletion.elts (injection x +C injection y))) _+_ {m} | equalityCommutative (mapAndIndex (apply _+_ (constSequence x) (constSequence y)) inverse m) | indexAndConst (x + y) m | indexAndApply (constSequence x) (constSequence y) _+_ {m} | indexAndConst x m | indexAndConst y m = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (absWellDefined _ _ invRight) (identityOfIndiscernablesRight __ (Equivalence.reflexive eq) (absZero order)))) (Equivalence.reflexive eq) 0<e
CInjection : SetoidInjection S cauchyCompletionSetoid injection
SetoidInjection.wellDefined CInjection {x} {y} x=y = injectionPreservesSetoid x y x=y
SetoidInjection.injective CInjection {x} {y} x=y = injectionPreservesSetoid' x y x=y