mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-19 01:58:45 +00:00
Rejig key-value (#41)
This commit is contained in:
@@ -7,8 +7,7 @@ open import Numbers.Naturals.Multiplication -- TODO - remove this dependency
|
||||
open import Numbers.Naturals.Order -- TODO - remove this dependency
|
||||
open import Numbers.Naturals.WithK
|
||||
open import WellFoundedInduction
|
||||
open import KeyValue
|
||||
open import KeyValueWithDomain
|
||||
open import KeyValue.KeyValue
|
||||
open import Orders
|
||||
open import Vectors
|
||||
open import Maybe
|
||||
@@ -249,31 +248,6 @@ module PrimeNumbers where
|
||||
allNumbersLessThan : (n : ℕ) → Vec (numberLessThan n) n
|
||||
allNumbersLessThan n = vecRev (allNumbersLessThanDescending n)
|
||||
|
||||
record extensionalHCF (a b : ℕ) : Set where
|
||||
field
|
||||
c : ℕ
|
||||
c|a : c ∣ a
|
||||
c|b : c ∣ b
|
||||
field
|
||||
zeroCase : ((a ≡ 0) & (b ≡ 0) & (c ≡ 0)) || ((0 <N a) || (0 <N b))
|
||||
hcfExtension : MapWithDomain (numberLessThan c) (Sg (numberLessThan c) (λ i → ((notDiv (numberLessThan.a i) a) || (notDiv (numberLessThan.a i) b)) || ((numberLessThan.a i) ∣ a & (numberLessThan.a i) ∣ b & (numberLessThan.a i) ∣ c))) (numberLessThanOrder c)
|
||||
hcfExtensionIsRightLength : vecLen (MapWithDomain.domain hcfExtension) ≡ c
|
||||
|
||||
{-
|
||||
hcfsContains : {a b r : ℕ} → (hcf : extensionalHCF a b) → (r<hcf : r <N extensionalHCF.c hcf) → vecContains (MapWithDomain.domain (extensionalHCF.hcfExtension hcf)) record { a = r ; a<n = r<hcf }
|
||||
hcfsContains = {!!}
|
||||
|
||||
hcfsEquivalent : {a b : ℕ} → hcfData a b → extensionalHCF a b
|
||||
hcfsEquivalent {a} {b} record { c = c ; c|a = c|a ; c|b = c|b ; hcf = hcf } = record { c = c ; c|a = c|a ; c|b = c|b ; hcfExtension = hcfsMap ; hcfExtensionIsRightLength = {!!} ; zeroCase = {!!} }
|
||||
where
|
||||
pair : Set
|
||||
pair = (Sg (numberLessThan c) (λ i → ((notDiv (numberLessThan.a i) a) || (notDiv (numberLessThan.a i) b)) || ((numberLessThan.a i) ∣ a & (numberLessThan.a i) ∣ b & (numberLessThan.a i) ∣ c)))
|
||||
allHcfs : Map (numberLessThan c) pair (numberLessThanOrder c)
|
||||
allHcfs = {!!}
|
||||
hcfsMap : MapWithDomain (numberLessThan c) (Sg (numberLessThan c) (λ i → ((notDiv (numberLessThan.a i) a) || (notDiv (numberLessThan.a i) b)) || ((numberLessThan.a i) ∣ a & (numberLessThan.a i) ∣ b & (numberLessThan.a i) ∣ c))) (numberLessThanOrder c)
|
||||
hcfsMap = {!!}
|
||||
-}
|
||||
|
||||
positiveTimes : {a b : ℕ} → (succ a *N succ b <N succ a) → False
|
||||
positiveTimes {a} {b} pr = zeroNeverGreater f'
|
||||
where
|
||||
|
Reference in New Issue
Block a user