mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-20 10:38:39 +00:00
Cleanup finset and modulo (#92)
This commit is contained in:
27
Sets/Cardinality/Countable/Definition.agda
Normal file
27
Sets/Cardinality/Countable/Definition.agda
Normal file
@@ -0,0 +1,27 @@
|
||||
{-# OPTIONS --safe --warning=error --without-K #-}
|
||||
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
|
||||
open import LogicalFormulae
|
||||
open import Functions
|
||||
open import Numbers.Naturals.Semiring
|
||||
open import Numbers.Naturals.Order
|
||||
open import Numbers.Naturals.Order.Lemmas
|
||||
open import Sets.Cardinality.Finite.Definition
|
||||
open import Semirings.Definition
|
||||
open import Sets.CantorBijection.CantorBijection
|
||||
open import Orders.Total.Definition
|
||||
|
||||
module Sets.Cardinality.Countable.Definition where
|
||||
|
||||
open import Semirings.Lemmas ℕSemiring
|
||||
|
||||
record CountablyInfiniteSet {a : _} (A : Set a) : Set a where
|
||||
field
|
||||
counting : A → ℕ
|
||||
countingIsBij : Bijection counting
|
||||
|
||||
data Countable {a : _} (A : Set a) : Set a where
|
||||
finite : FiniteSet A → Countable A
|
||||
infinite : CountablyInfiniteSet A → Countable A
|
||||
|
Reference in New Issue
Block a user