mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-11 06:38:39 +00:00
Cleanup finset and modulo (#92)
This commit is contained in:
@@ -5,18 +5,17 @@ open import Setoids.Setoids
|
||||
open import Functions
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
open import Numbers.Naturals.Naturals
|
||||
open import Sets.FinSet
|
||||
|
||||
module Groups.Definition where
|
||||
|
||||
record Group {lvl1 lvl2} {A : Set lvl1} (S : Setoid {lvl1} {lvl2} A) (_·_ : A → A → A) : Set (lsuc lvl1 ⊔ lvl2) where
|
||||
open Setoid S
|
||||
field
|
||||
+WellDefined : {m n x y : A} → (m ∼ x) → (n ∼ y) → (m · n) ∼ (x · y)
|
||||
0G : A
|
||||
inverse : A → A
|
||||
+Associative : {a b c : A} → (a · (b · c)) ∼ (a · b) · c
|
||||
identRight : {a : A} → (a · 0G) ∼ a
|
||||
identLeft : {a : A} → (0G · a) ∼ a
|
||||
invLeft : {a : A} → (inverse a) · a ∼ 0G
|
||||
invRight : {a : A} → a · (inverse a) ∼ 0G
|
||||
record Group {lvl1 lvl2} {A : Set lvl1} (S : Setoid {lvl1} {lvl2} A) (_·_ : A → A → A) : Set (lsuc lvl1 ⊔ lvl2) where
|
||||
open Setoid S
|
||||
field
|
||||
+WellDefined : {m n x y : A} → (m ∼ x) → (n ∼ y) → (m · n) ∼ (x · y)
|
||||
0G : A
|
||||
inverse : A → A
|
||||
+Associative : {a b c : A} → (a · (b · c)) ∼ (a · b) · c
|
||||
identRight : {a : A} → (a · 0G) ∼ a
|
||||
identLeft : {a : A} → (0G · a) ∼ a
|
||||
invLeft : {a : A} → (inverse a) · a ∼ 0G
|
||||
invRight : {a : A} → a · (inverse a) ∼ 0G
|
||||
|
Reference in New Issue
Block a user