mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-11 14:48:42 +00:00
Move equiv rels (#46)
This commit is contained in:
23
Sets/EquivalenceRelations.agda
Normal file
23
Sets/EquivalenceRelations.agda
Normal file
@@ -0,0 +1,23 @@
|
||||
{-# OPTIONS --safe --warning=error --without-K #-}
|
||||
|
||||
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
|
||||
|
||||
open import LogicalFormulae
|
||||
open import Functions
|
||||
|
||||
module Sets.EquivalenceRelations where
|
||||
|
||||
Reflexive : {a b : _} {A : Set a} (r : Rel {a} {b} A) → Set (a ⊔ b)
|
||||
Reflexive {A = A} r = {x : A} → r x x
|
||||
|
||||
Symmetric : {a b : _} {A : Set a} (r : Rel {a} {b} A) → Set (a ⊔ b)
|
||||
Symmetric {A = A} r = {x y : A} → r x y → r y x
|
||||
|
||||
Transitive : {a b : _} {A : Set a} (r : Rel {a} {b} A) → Set (a ⊔ b)
|
||||
Transitive {A = A} r = {x y z : A} → r x y → r y z → r x z
|
||||
|
||||
record Equivalence {a b : _} {A : Set a} (r : Rel {a} {b} A) : Set (a ⊔ lsuc b) where
|
||||
field
|
||||
reflexive : Reflexive r
|
||||
symmetric : Symmetric r
|
||||
transitive : Transitive r
|
Reference in New Issue
Block a user