mirror of
https://github.com/Smaug123/agdaproofs
synced 2025-10-14 07:58:41 +00:00
Move equiv rels (#46)
This commit is contained in:
@@ -99,21 +99,3 @@ module Functions where
|
||||
|
||||
codom : {a b : _} {A : Set a} {B : Set b} (f : A → B) → Set b
|
||||
codom {B = B} f = B
|
||||
|
||||
record Reflexive {a b : _} {A : Set a} (r : Rel {a} {b} A) : Set (a ⊔ lsuc b) where
|
||||
field
|
||||
reflexive : {b : A} → r b b
|
||||
|
||||
record Symmetric {a b : _} {A : Set a} (r : Rel {a} {b} A) : Set (a ⊔ lsuc b) where
|
||||
field
|
||||
symmetric : {b c : A} → r b c → r c b
|
||||
|
||||
record Transitive {a b : _} {A : Set a} (r : Rel {a} {b} A) : Set (a ⊔ lsuc b) where
|
||||
field
|
||||
transitive : {b c d : A} → r b c → r c d → r b d
|
||||
|
||||
record Equivalence {a b : _} {A : Set a} (r : Rel {a} {b} A) : Set (a ⊔ lsuc b) where
|
||||
field
|
||||
reflexiveEq : Reflexive r
|
||||
symmetricEq : Symmetric r
|
||||
transitiveEq : Transitive r
|
||||
|
Reference in New Issue
Block a user